OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 228–234

Stabilized photorefractive running holograms, with arbitrarily selected phase shift, for material characterization

Ivan de Oliveira, Agnaldo A. Freschi, Igor Fier, and Jaime Frejlich  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 3, pp. 228-234 (2012)
http://dx.doi.org/10.1364/OME.2.000228


View Full Text Article

Enhanced HTML    Acrobat PDF (686 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the recording of stabilized running holograms in photorefractive materials with arbitrarily selected phase shift φ between the transmitted and difracted beams propagating along the same direction behind the photorefractive crystal. The dependence of the diffraction efficiency and of the hologram speed on φ, in such stabilized holograms, can be easily measured and used for material characterization. In this communication we applied for the first time this technique for studying and characterizing hole-electron competition in a nominally undoped titanosillenite crystal sample.

© 2012 OSA

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(160.5320) Materials : Photorefractive materials

ToC Category:
Photorefractive Materials

History
Original Manuscript: January 5, 2012
Revised Manuscript: January 28, 2012
Manuscript Accepted: January 28, 2012
Published: February 3, 2012

Citation
Ivan de Oliveira, Agnaldo A. Freschi, Igor Fier, and Jaime Frejlich, "Stabilized photorefractive running holograms, with arbitrarily selected phase shift, for material characterization," Opt. Mater. Express 2, 228-234 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-3-228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, Oxford, 1996).
  2. S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, “Running holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun.44, 19–23 (1982). [CrossRef]
  3. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space–charge waves and their parametric excitation,” J. Opt. Soc. Am. B10, 1919–1932 (1993). [CrossRef]
  4. B. I. Sturman, M. Mann, and K. H. Ringhofer, “Instability of the resonance enhancement of moving photorefractive gratings,” Opt. Lett.18, 702–704 (1993). [CrossRef] [PubMed]
  5. B. I. Sturman, E. V. Podivilov, A. I. Chemykh, K. H. Ringhofer, V. P. Kamenov, H. C. Pedersen, and P. M. Johansen, “Instability of the resonance excitation of space-charge waves in sillenite crystals,” J. Opt. Soc. Am. B16, 556–564 (1999). [CrossRef]
  6. M. Bryushinin, “Interaction of running gratings of the space charge and conductivity in photorefractive Bi12Si(Ti)O20 crystals,” Appl. Phys. B79, 851–856 (2004). [CrossRef]
  7. I. de Oliveira and J. Frejlich, “Photorefractive running hologram for materials characterization,” J. Opt. Soc. Am. B18, 291–297 (2001). [CrossRef]
  8. M. Bryushinin, V. Kulikov, and I. Sokolov, “Combined excitation of running space charge and conductivity gratings in photorefractive crystals,” Phys. Rev. B71, 165208 (2005). [CrossRef]
  9. I. de Oliveira and J. Frejlich, “Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals,” J. Opt. Soc. Am. B26, 1298–1302 (2007). [CrossRef]
  10. A. A. Kamshilin, J. Frejlich, and L. Cescato, “Photorefractive Crystals for the Stabilization of the Holographic Setup,” Appl. Opt.25, 2375–2381 (1986). [CrossRef] [PubMed]
  11. J. Frejlich, L. Cescato, and G. F. Mendes, “Analysis of an active stabilization system for a holographic setup,” Appl. Opt.27, 1967–1976 (1988). [CrossRef] [PubMed]
  12. J. Frejlich, P. M. Garcia, and L. Cescato, “Adaptive Fringe-Locked Running Hologram in Photorefractive Crystals,” Opt. Lett.14, 1210–1212 (1989). [CrossRef] [PubMed]
  13. I. de Oliveira and J. Frejlich, “Gain and stability in photorefractive two-wave mixing,” Phys. Rev. A64, 033806 (2001). [CrossRef]
  14. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett.11, 312–314 (1986). [CrossRef] [PubMed]
  15. J. Frejlich, “Fringe-Locked Running Hologram and Multiple Photoactive Species in Bi12TiO20,” J. Appl. Phys.68, 3104–3109 (1990). [CrossRef]
  16. R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009). [CrossRef]
  17. E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun.141, 132–136 (1997). [CrossRef]
  18. J. Frejlich, A. A. Freschi, P. M. Garcia, E. Shamonina, V. Y. Gayvoronsky, and K. H. Ringhofer, “Feedback-controlled running holograms in strongly absorbing photorefractive materials,” J. Opt. Soc. Am. B17, 1517–1521 (2000). [CrossRef]
  19. M. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B72, 717–721 (2001). [CrossRef]
  20. A. Salazar, H. Lorduy, R. Montenegro, and J. Frejlich, “An improved procedure for fringe-locked photorefractive running hologram data processing,” J. Opt. A: Pure Appl. Opt.11, 045201 (2009). [CrossRef]
  21. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett.20, 635–637 (1995). [CrossRef] [PubMed]
  22. A. A. Freschi, P. M. Garcia, and J. Frejlich, “Phase–controlled photorefractive running holograms,” Opt. Commun.143, 257–260 (1997). [CrossRef]
  23. R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt.10, 104006 (2008). [CrossRef]
  24. G. C. Valley, “Erase rates in photorefractive materials with two photoactive species,” Appl. Opt.22, 3160–3164 (1983). [CrossRef] [PubMed]
  25. M. Carrascosa and F. Agullo-Lopez, “Erasure of holographic gratings in photorefractive materials with two active species,” Appl. Opt.27, 2851–2857 (1988). [CrossRef] [PubMed]
  26. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64, 273–291 (1997). [CrossRef]
  27. I. de Oliveira, R. Montenegro, and J. Frejlich, “Hole-electron electrical coupling in photorefractive materials,” Appl. Phys. Lett.95, 241908 (2009). [CrossRef]
  28. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, New York, 2006).
  29. V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys.109, 024901 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited