OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 235–249

Comparative studies of the spectroscopic properties of Nd3+: YAG nanocrystals, transparent ceramic and single crystal

M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 3, pp. 235-249 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Detailed comparative spectroscopic studies of Nd3+ doped YAG nanocrystals, transparent ceramic and single crystal have been performed. Although most of the radiative spectral properties of Nd3+ are almost in good agreement between the three hosts, the non-radiative losses are significantly high in nanocrystals, which are attributed due to the presence of large amount of hydroxyl groups on the nanocrystals surface which deteriorates the quality of the material for laser applications. In addition, wavelength dependent scattering loss for the Nd3+ doped YAG nanocrystals is found significantly high compared to those of Nd3+ doped single crystal and ceramic.

© 2012 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(260.2510) Physical optics : Fluorescence
(260.6580) Physical optics : Stark effect
(290.5850) Scattering : Scattering, particles
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission

ToC Category:
Laser Materials

Original Manuscript: December 15, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 6, 2012
Published: February 8, 2012

M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar, "Comparative studies of the spectroscopic properties of Nd3+: YAG nanocrystals, transparent ceramic and single crystal," Opt. Mater. Express 2, 235-249 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002). [CrossRef]
  2. R. Boulesteix, A. Maître, J. F. Baumard, Y. Rabinovitch, and F. Reynaud, “Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties,” Opt. Express18(14), 14992–15002 (2010). [CrossRef] [PubMed]
  3. S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011). [CrossRef]
  4. H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(4), 812–817 (2009). [CrossRef]
  5. A. Ikesue, K. Kamata, and K. Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J. Am. Ceram. Soc.79(7), 1921–1926 (1996). [CrossRef]
  6. A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc.80(6), 1517–1522 (1997). [CrossRef]
  7. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  8. J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008). [CrossRef]
  9. J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007). [CrossRef]
  10. X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).
  11. H. Liu, Y. Sang, H. Qin, Y. Lv, and J. Wang, “Spray freeze drying method for preparation of Nd-doped yttrium aluminum garnet micro-sized and nano-sized powders” (Shandong University, China, 2011), 6 pp.
  12. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000). [CrossRef]
  13. Z. Liu, W. Wen, and C. Pang, “Preparation Nd:YAG powder by co-precipitation method and study on the effect of pH,” Taoci (Xianyang, China)41, 33–35 (2009).
  14. L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008). [PubMed]
  15. P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).
  16. X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).
  17. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid-State Reaction Method,” J. Am. Ceram. Soc.78(1), 225–228 (1995). [CrossRef]
  18. M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys.67(1), 453–458 (1990). [CrossRef]
  19. M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys.69(6), 3709–3718 (1991). [CrossRef]
  20. G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004). [CrossRef]
  21. A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011). [CrossRef]
  22. D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys.101(11), 113115 (2007). [CrossRef]
  23. D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006). [CrossRef]
  24. G. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  25. A. A. Kaminskii, Laser Crystals: Physics and Properties (Springer-Verlag, 1979).
  26. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1990).
  27. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B60(20), R14012–R14015 (1999). [CrossRef]
  28. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B3(1), 102–114 (1986). [CrossRef]
  29. D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007). [CrossRef]
  30. D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006). [CrossRef]
  31. A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003). [CrossRef]
  32. G. D. Yoder, P. K. Diwakar, and D. W. Hahn, “Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering,” Appl. Opt.44(20), 4211–4219 (2005). [CrossRef] [PubMed]
  33. W. Chen, Doped Nanomaterials and Nanodevices (American Scientific Publishers, 2010).
  34. D. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys.21(5), 836–850 (1953). [CrossRef]
  35. B. Di Bartolo and G. Armagan, A. International School of Atomic and Molecular Spectroscopy, Spectroscopy of Solid-State Laser-Type Materials (Plenum Press, 1987).
  36. D. E. Day and J. M. Stevels, “Effect of dissolved water on the internal friction of glass,” J. Non-Cryst. Solids14(1), 165–177 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited