OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 250–260

Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals

N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, and M. D. Dawson  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 3, pp. 250-260 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1601 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the steady-state and optical modulation characteristics of a luminescence down-converting colloidal quantum dot/polyimide nanocomposite system suitable for integration with gallium nitride optoelectronics. The approach provides solution-processable and environmentally stable composite materials whose optical conversion and intrinsic modulation properties were evaluated at wavelengths from 535 to 624 nm. A nanocomposite for white-light generation upon excitation and mixing with 450-nm light was also obtained by blending colloidal quantum dots of different sizes in the same matrix. The forward external quantum efficiencies of the resulting nanocomposites were found to depend on the wavelength and can be as high as 33%. Optical modulation bandwidth above 25 MHz, which is an order of magnitude higher than for typical phosphor-based color-converters for GaN LEDs, and wavelength-converted data with an open-eye diagram at 25 Mb/s are demonstrated under external gallium nitride light-emitting diode excitation. These modulation characteristics are correlated with carrier lifetimes. This work provides guideline parameters and creates a possible path to integrated hybrid visible light sources for scientific and communications applications.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics
(160.4236) Materials : Nanomaterials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: December 23, 2011
Revised Manuscript: February 6, 2012
Manuscript Accepted: February 8, 2012
Published: February 13, 2012

Virtual Issues
Quantum Dots for Photonic Applications (2012) Optical Materials Express

N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, and M. D. Dawson, "Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals," Opt. Mater. Express 2, 250-260 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006). [CrossRef] [PubMed]
  2. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010). [CrossRef] [PubMed]
  3. S. Nizamoglu and H. V. Demir, “Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting,” Appl. Phys. Lett.95(15), 151111 (2009). [CrossRef]
  4. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006). [CrossRef]
  5. E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys.69(12), 3069–3099 (2006). [CrossRef]
  6. F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007). [CrossRef] [PubMed]
  7. B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009). [CrossRef] [PubMed]
  8. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008). [CrossRef]
  9. M. Wu, Z. Gong, A. J. Kuehne, A. L. Kanibolotsky, Y. J. Chen, I. F. Perepichka, A. R. Mackintosh, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, “Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing,” Opt. Express17(19), 16436–16443 (2009). [CrossRef] [PubMed]
  10. B. Guilhabert, D. Elfström, A. J. Kuehne, D. Massoubre, H. X. Zhang, S. R. Jin, A. R. Mackintosh, E. Gu, R. A. Pethrick, and M. D. Dawson, “Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes,” Opt. Express16(23), 18933–18941 (2008). [CrossRef] [PubMed]
  11. J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009). [CrossRef]
  12. J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, “Broadband Information Broadcasting Using LED-Based Interior Lighting,” J. Lightwave Technol.26(24), 3883–3892 (2008). [CrossRef]
  13. J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008). [CrossRef]
  14. J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010). [CrossRef]
  15. V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202–5208 (2010). [CrossRef] [PubMed]
  16. S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008). [CrossRef]
  17. C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010). [CrossRef]
  18. V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” Proc. SPIE7224, 72240Q (2009). [CrossRef]
  19. http://www.mantechmaterials.com/products.asp
  20. C. W. Jeon, H. W. Choi, and M. D. Dawson, “Fabrication of Matrix-Addressable InGaN-Based Microdisplays of High Array Density,” IEEE Photon. Technol. Lett.15(11), 1516–1518 (2003). [CrossRef]
  21. V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009). [CrossRef]
  22. S. Nizamoglu and H. V. Demir, “Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes,” J. Appl. Phys.105(8), 083112 (2009). [CrossRef]
  23. A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005). [CrossRef] [PubMed]
  24. U. Woggon, Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics (Springer, 1997), Vol. 136.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited