OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 261–268

In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 3, pp. 261-268 (2012)
http://dx.doi.org/10.1364/OME.2.000261


View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ca2Si5N8:Eu2+,Tm3+ presents outstanding long lasting luminescence at about 610 nm. However, to be useful for in vivo optical imaging, persistent luminescence materials should possess high optical performance combined with sizes in the nanoscale. With this aim, we investigated two different techniques for the preparation of nanoparticles from Ca2Si5N8:Eu2+,Tm3+ bulk powder. First, nanoparticles were successfully prepared with the pulsed laser ablation method in liquid (abbreviated as PLAL). Secondly, nanoparticles obtained by selective sedimentation from the bulk compound resulted in satisfactory yield and allowed to perform the first real-time in vivo imaging with Ca2Si5N8:Eu2+,Tm3+ host. Finally the influence of surface functionalization on the biodistribution of the probe after systemic injection is discussed.

© 2012 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(250.5230) Optoelectronics : Photoluminescence
(300.2140) Spectroscopy : Emission

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: January 3, 2012
Revised Manuscript: January 31, 2012
Manuscript Accepted: February 6, 2012
Published: February 14, 2012

Virtual Issues
Persistent Phosphors (2012) Optical Materials Express

Citation
T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, "In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles," Opt. Mater. Express 2, 261-268 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-3-261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Smith, H. Duan, A. M. Mohs, and S. Nie, “Bioconjugated quantum dots for in vivo molecular and cellular imaging,” Adv. Drug Deliv. Rev.60(11), 1226–1240 (2008). [CrossRef] [PubMed]
  2. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007). [CrossRef] [PubMed]
  3. A. Lecointre, A. Bessiere, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas.45(3–6), 497–499 (2010). [CrossRef]
  4. A. Lecointre, B. Viana, Q. le Masne de Chermont, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009). [CrossRef]
  5. A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a Red Persistent Luminescence Phosphor: The Example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011). [CrossRef]
  6. A. J. J. Bos, P. Dorenbos, A. Bessiere, and B. Viana, “Lanthanide energy levels in YPO4,” Radiat. Meas.43(2-6), 222–226 (2008). [CrossRef]
  7. T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano5(2), 854–862 (2011). [CrossRef] [PubMed]
  8. T. Maldiney, G. Byk, N. Wattier, J. Seguin, R. Khandadash, M. Bessodes, C. Richard, and D. Scherman, “Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability,” Int. J. Pharm.423(1), 102–107 (2012). [CrossRef] [PubMed]
  9. T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. (2012), doi:. [CrossRef]
  10. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011). [CrossRef] [PubMed]
  11. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011). [CrossRef] [PubMed]
  12. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009). [CrossRef]
  13. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Luminescent afterglow behavior in the M2Si5N8:Eu family (M=Ca, Sr, Ba),” Materials4(6), 980–990 (2011). [CrossRef]
  14. P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. Van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M=Ca, Sr, Ba) persistent phosphors,” J. Lumin.132(3), 682–689 (2012). [CrossRef]
  15. T. Schlieper and W. Schnick, “Nitrido-silicate. I-Hochtemperatur-Synthesen und Kristallstrukturen von Ca2Si5N8,” Z. Anorg. Allg. Chem.621(6), 1037–1041 (1995). [CrossRef]
  16. G. Ledoux, D. Amans, C. Dujardin, and K. Masenelli-Varlot, “Facile and rapid synthesis of highly luminescent nanoparticles via pulsed laser ablation in liquid,” Nanotechnology20(44), 445605 (2009). [CrossRef] [PubMed]
  17. A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influence on Nanoparticle Production during Pulsed Laser Ablation,” J. Laser Micro/Nanoeng.3(2), 73–77 (2008). [CrossRef]
  18. F. Mafuné, J.-Ya. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution,” J. Phys. Chem. B104(39), 9111–9117 (2000). [CrossRef]
  19. H. Usui, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions,” J. Phys. Chem. B109(1), 120–124 (2005). [CrossRef] [PubMed]
  20. D. Amans, C. Malaterre, M. Diouf, C. Mancini, F. Chaput, G. Ledoux, G. Breton, Y. Guillin, C. Dujardin, K. Masenelli-Varlot, and P. Perriat, “Synthesis of Oxide Nanoparticles by Pulsed Laser Ablation in Liquids Containing a Complexing Molecule: Impact on Size Distributions and Prepared Phases,” J. Phys. Chem. C115(12), 5131–5139 (2011). [CrossRef]
  21. L. Yang, P. W. May, L. Yin, R. Brown, and T. B. Scott, “Direct growth of highly organized crystalline carbon nitride from liquid phase pulsed laser ablation,” Chem. Mater.18(21), 5058–5064 (2006). [CrossRef]
  22. P. Dorenbos, “Energy of the first 4f(7)-> 4f(6)5d transition of Eu2+ in inorganic compounds,” J. Lumin.104(4), 239–260 (2003). [CrossRef]
  23. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+ doped compounds: a review,” Materials3(4), 2536–2566 (2010). [CrossRef]
  24. B. Mercier, “Propriétés de luminescence et effets de confinement dans Gd2O3:Eu,” Ph-D thesis (University Claude Bernard Lyon, 2005), http://pcml.univ-lyon1.fr/texte-theses_pdf/these%20B-MERCIER.pdf .
  25. V. Buissette, A. Huignard, T. Gacoin, J. P. Boilot, P. Aschehoug, and B. Viana, “Luminescence properties of YVO4: Ln (Ln = Nd, Yb, and Yb-Er) nanoparticles,” Surf. Sci.532-535, 444–449 (2003). [CrossRef]
  26. D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. Meindl, “Ion-sensing devices with silicon nitride and borosilicate glass insulators,” IEEE Trans. Electron. Dev.34(8), 1700–1707 (1987). [CrossRef]
  27. J. Kim, P. Seidler, L. S. Wan, and C. Fill, “Formation, structure, and reactivity of amino-terminated organic films on silicon substrates,” J. Colloid Interface Sci.329(1), 114–119 (2009). [CrossRef] [PubMed]
  28. A. P. Castano, T. N. Demidova, and M. R. Hamblin, “Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization,” Photodiagn. Photodyn. Ther.1(4), 279–293 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited