OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 269–278

A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles

José Dintinger, Stefan Mühlig, Carsten Rockstuhl, and Toralf Scharf  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 3, pp. 269-278 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a novel bottom-up approach to fabricate by self assembly a metamaterial from metallic nanoparticles in a two-step process. In the first step, a metamaterial made of densely packed silver nanoparticles is required. The material dispersion with increasing nanoparticle densities, from dispersed to randomly packed nanoparticles, was measured by spectroscopic ellipsometry, demonstrating high permittivity values in the visible. In the second step, this material was used to prepare spherical clusters by a method based on oil-in-water emulsion. The optical properties of these clusters were equally investigated by spectroscopic means. Comparisons with rigorous numerical simulations clearly indicate that, depending on the cluster size, their spectral response can be unambiguously associated with the excitation of a magnetic dipole resonance. As a consequence, such spherical clusters are promising building blocks for future metamaterials possessing a magnetic response in the visible range.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(290.4210) Scattering : Multiple scattering
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 10, 2012
Revised Manuscript: February 11, 2012
Manuscript Accepted: February 11, 2012
Published: February 14, 2012

José Dintinger, Stefan Mühlig, Carsten Rockstuhl, and Toralf Scharf, "A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles," Opt. Mater. Express 2, 269-278 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Cai and V. Shalaev, Optical Metamaterials Fundamentals and Applications (Springer, 2010).
  2. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007). [CrossRef] [PubMed]
  3. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010). [CrossRef] [PubMed]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  5. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  6. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30(23), 3198–3200 (2005). [CrossRef] [PubMed]
  7. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30(24), 3356–3358 (2005). [CrossRef] [PubMed]
  8. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  9. S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter14(15), 4035–4044 (2002). [CrossRef]
  10. L. Lewin, “The electrical constants of a material loaded with spherical particles,” Proc. Inst. Electr. Eng.94, 65–68 (1947).
  11. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett.98(15), 157403 (2007). [CrossRef] [PubMed]
  12. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett.99(10), 107401 (2007). [CrossRef] [PubMed]
  13. R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys.13(12), 123017 (2011). [CrossRef]
  14. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk'yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010). [CrossRef]
  15. V. Yannopapas, “Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies,” Appl. Phys., A Mater. Sci. Process.87(2), 259–264 (2007). [CrossRef]
  16. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005). [CrossRef] [PubMed]
  17. V. Yannopapas and N. V. Vitanov, “Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength,” Phys. Rev. B74(19), 193304 (2006). [CrossRef]
  18. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express19(10), 9607–9616 (2011). [CrossRef] [PubMed]
  19. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett.99(1), 017401 (2007). [CrossRef] [PubMed]
  20. S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano5(8), 6586–6592 (2011). [CrossRef] [PubMed]
  21. C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B79(4), 045111 (2009). [CrossRef]
  22. A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express19(3), 2754–2772 (2011). [CrossRef] [PubMed]
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).
  24. R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzinger, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B22(6), 3450–3453 (2004). [CrossRef]
  25. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989). [CrossRef] [PubMed]
  26. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun.182(4-6), 273–279 (2000). [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  28. F. Bai, D. Wang, Z. Huo, W. Chen, L. Liu, X. Liang, C. Chen, X. Wang, Q. Peng, and Y. Li, “A versatile bottom-up assembly approach to colloidal spheres from nanocrystals,” Angew. Chem. Int. Ed. Engl.46(35), 6650–6653 (2007). [CrossRef] [PubMed]
  29. I. Hussain, H. Zhang, M. Brust, J. Barauskas, and A. I. Cooper, “Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates,” J. Colloid Interface Sci.350(1), 368–372 (2010). [CrossRef] [PubMed]
  30. P. Qiu, C. Jensen, N. Charity, R. Towner, and C. Mao, “Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles,” J. Am. Chem. Soc.132(50), 17724–17732 (2010). [CrossRef] [PubMed]
  31. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B81(7), 075317 (2010). [CrossRef]
  32. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt.34(21), 4573–4588 (1995). [CrossRef] [PubMed]
  33. S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials (Amst.)5(2-3), 64–73 (2011). [CrossRef]
  34. J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express18(14), 14454–14466 (2010). [CrossRef] [PubMed]
  35. C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B83(24), 245119 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited