OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 279–286

Optofluidic Fabry-Pérot sensor for water solutions at high flow rates

Gediminas Gervinskas, Daniel J. Day, and Saulius Juodkazis  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 3, pp. 279-286 (2012)
http://dx.doi.org/10.1364/OME.2.000279


View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optofluidic sensor for water solutions has been fabricated using a transfer adhesive film and simple all-room-temperature procedures. Performance of a Fabry-Perot (FP) cavity subjected to the high water throughput of ∼ 2 ml per 1 min (at a 0.8 m/s flow velocity) was spectrally characterized. The 25-μm-wide cavity can be repeatedly subjected to pressures causing up to a 1.5% its width’s increase upon pressure cycling. Potential of the new optofluidic platform for applications where (i) large water volumes should be filtered as well as (ii) for measurements of turbulence onset in two-dimensional flows at high 1 m/s velocity are discussed. We show possibility to use FP cavity for the pressure sensing at sensitivity of ΔλP ≃ 0.075 nm/Pa and for the refractive index sensing at Δλn ≃ 390 nm per the refractive index unit.

© 2012 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Thin Films

History
Original Manuscript: January 10, 2012
Revised Manuscript: February 6, 2012
Manuscript Accepted: February 6, 2012
Published: February 16, 2012

Citation
Gediminas Gervinskas, Daniel J. Day, and Saulius Juodkazis, "Optofluidic Fabry-Pérot sensor for water solutions at high flow rates," Opt. Mater. Express 2, 279-286 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-3-279


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006). [CrossRef]
  2. J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011). [CrossRef] [PubMed]
  3. K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82(5), 051407 (2011). [CrossRef]
  4. H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci.24, 665–697 (1999). [CrossRef]
  5. M. Miwa, S. Juodkazis, and H. Misawa, “Drag of laser trapped micro-particle,” Jpn. J. Appl. Phys.39(4A), 1930–1933 (2000). [CrossRef]
  6. E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. Nonlinear Opt. Phys. Mater.18(2), 167–194 (2009). [CrossRef]
  7. L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics3, 012002 (2009). [CrossRef]
  8. D. Y. C. Chan, R. R. Dagastine, and L. R. White, “Forces between a rigid probe particle and a liquid interface -I. The repulsive case,” J. Colloid Interface Sci.236, 141–154 (2001). [CrossRef] [PubMed]
  9. N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009). [CrossRef] [PubMed]
  10. G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159(1), 39–43 (2011). [CrossRef]
  11. I. R. Young, S. Zieger, and A. V. Babanin, “Global trends in wind speed and wave height,” Science332(6028), 451–455 (2011). [CrossRef] [PubMed]
  12. H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys.7(4), 321–324 (2011). [CrossRef]
  13. D. Lange, C. Storment, C. Conley, and G. Kovacs, “A microfluidic shadow imaging system for the study of the nematode caenorhabditis elegans in space,” Sens. Actuators B107(2), 904–914 (2005). [CrossRef]
  14. Z. Wu, N. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” J. Micromech. Microeng.14, 604–611 (2004). [CrossRef]
  15. S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009). [CrossRef]
  16. H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007). [CrossRef]
  17. J. Wu, D. Day, and M. Gu, “Polymeric optofluidic Fabry-Pérot sensor by direct laser machining and hot embossing,” Appl. Opt.50(13), 1843–1849 (2011). [CrossRef] [PubMed]
  18. H. Shao, D. Kumar, S. Feld, and K. Lear, “Fabrication of a Fabry–Pérot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates,” J. Microelectromech. Syst.14(4), 756–762 (2005). [CrossRef]
  19. W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999). [CrossRef]
  20. S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006). [CrossRef]
  21. P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2005).
  22. Y. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).
  23. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011). [CrossRef] [PubMed]
  24. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited