OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 304–320

Analysis of glass flow during extrusion of optical fiber preforms

Heike Ebendorff-Heidepriem and Tanya M. Monro  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 3, pp. 304-320 (2012)
http://dx.doi.org/10.1364/OME.2.000304


View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Billet extrusion is a powerful technique for fabricating soft glass optical fiber preforms. This paper reports progress in the understanding of the relationships between extrusion process parameters and the die geometry. The friction for glass flow within the die is described by a die constant that can be either calculated using die feature dimensions or determined using processing parameters and a glass with known temperature-viscosity behavior. In complex dies in which the glass flows through an array of feed holes the friction can be calculated from the number, length and diameter of the individual channels within the die. The glass flow analysis allows improvement of the extrusion process and guidance of future die design.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: January 3, 2012
Revised Manuscript: February 15, 2012
Manuscript Accepted: February 17, 2012
Published: February 22, 2012

Citation
Heike Ebendorff-Heidepriem and Tanya M. Monro, "Analysis of glass flow during extrusion of optical fiber preforms," Opt. Mater. Express 2, 304-320 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-3-304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006). [CrossRef]
  2. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express10(25), 1520–1525 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1520 . [PubMed]
  3. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3568 . [CrossRef] [PubMed]
  4. J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006). [CrossRef]
  5. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086 . [CrossRef] [PubMed]
  6. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5083 . [CrossRef] [PubMed]
  7. V. V. Kumar, A. K. George, J. C. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express11(20), 2641–2645 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13651 . [CrossRef] [PubMed]
  8. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005). [CrossRef]
  9. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13651 . [CrossRef] [PubMed]
  10. M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured tellurite fibre lasers,” IEEE Photon. Technol. Lett. (to be published).
  11. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2646 . [CrossRef] [PubMed]
  12. A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol.210(14), 2016–2022 (2010). [CrossRef]
  13. H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-23-2861 . [CrossRef] [PubMed]
  14. K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994). [CrossRef]
  15. D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256–257, 232–236 (1999). [CrossRef]
  16. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008). [CrossRef]
  17. E. T. Y. Lee, “Development and characterisation of phosphate glasses for athermalisation,” PhD thesis, (University of Southampton, 2004).
  18. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 µm,” Opt. Express17(22), 20249–20255 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-22-20249 . [CrossRef] [PubMed]
  19. Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009). [CrossRef]
  20. H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the Fabrication of the Next-Generation Soft Glass Microstructured Optical Fibers,” 1st Int. Workshop on Speciality Optical Fibers, Sao Pedro, Brazil, Aug 2008.
  21. K. J. Rowland and H. Ebendorff-Heidepriem, S. Afshar V., and T. M. Monro, “Antiresonance guiding in soft-glass hollow-core microstructured fibres; fabrication and spectra properties,” Australian Conference on Optical Fibre Technology (ACOFT‘2009), Adelaide, 29 Nov – 3 Dec 2009, paper 161.
  22. H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol.70(1-3), 145–150 (1997). [CrossRef]
  23. W. Egel-Hess and E. Roeder, “Extrusion of glass melts – Influence of wall friction effects on the die swell phenomenon,” Glastech. Ber.62, 279–284 (1989).
  24. E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972). [CrossRef]
  25. G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 1. Flows in the orifice channel with the use of different materials for construction,” Glastech. Ber.57, 182–187 (1984).
  26. G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 2. Deformation processes in between the deformation zone and the take up drum,” Glastech. Ber.57, 208–213 (1984).
  27. M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000). [CrossRef]
  28. http://www.schott.com/advanced_optics/english/our_products/materials/optical_glass.html .
  29. http://www.pgo-online.com/intl/katalog/B270.html .
  30. Personnel communication with Asahi Glass Co.
  31. Schott technical data website.
  32. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev.17(3), 273–283 (1921). [CrossRef]
  33. http://www.azom.com/article.aspx?ArticleID=964 .
  34. M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newt. Fluid Mech.159(1-3), 1–9 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited