OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 4 — Apr. 1, 2012
  • pp: 358–370

Optical and compositional properties of amorphous silicon-germanium films by plasma processing for integrated photonics

William W. Hernández-Montero, Ignacio E. Zaldívar-Huerta, Carlos Zúñiga-Islas, Alfonso Torres-Jácome, Claudia Reyes-Betanzo, and Adrián Itzmoyotl-Toxqui  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 4, pp. 358-370 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the study of hydrogenated amorphous silicon-germanium (a-Si1-XGeX:H) films prepared by low-frequency plasma-enhanced chemical vapor deposition (LF-PECVD) varying the composition (0 ≤ X ≤ 1). Silicon and germanium content is determined by energy dispersion spectroscopy (EDS). Refractive index, absorption coefficient and optical gap are estimated by transmittance measurements as well as by the use of PUMA software. Absorption coefficients obtained by using this software and by the Beer-Lambert law show good agreement according to absorption region. Results indicate that refractive index exhibits a linear behavior on germanium content for atomic percent (at.%). Employing these films and by the use of the finite-element software COMSOL, a single-mode low-contrast rib optical waveguide operating at the wavelength of 1550 nm is simulated, and later fabricated by using photolithography and plasma etching techniques. Measured optical losses are 7.6 dB/cm.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits
(310.6860) Thin films : Thin films, optical properties
(350.5400) Other areas of optics : Plasmas

ToC Category:

Original Manuscript: December 22, 2011
Revised Manuscript: February 13, 2012
Manuscript Accepted: February 28, 2012
Published: March 2, 2012

William W. Hernández-Montero, Ignacio E. Zaldívar-Huerta, Carlos Zúñiga-Islas, Alfonso Torres-Jácome, Claudia Reyes-Betanzo, and Adrián Itzmoyotl-Toxqui, "Optical and compositional properties of amorphous silicon-germanium films by plasma processing for integrated photonics," Opt. Mater. Express 2, 358-370 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  2. A. Scandurra, M. Lenzi, R. Guerra, F. G. Della Corte, and M. A. Nigro, “Optical Interconnects for Network on Chip,” 1st International Conference on Nano-Networks and Workshops, Lausanne, September 2006.
  3. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-Based Plasmonics for On-Chip Photonics,” IEEE J. Sel. Top. Quantum Electron.16(1), 295–306 (2010). [CrossRef]
  4. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008). [CrossRef] [PubMed]
  5. A. Vonsovici, G. T. Reed, and A. G. R. Evans, “β-SiC-on insulator waveguide structures for modulators and sensors systems,” Mater. Sci. Semicond. Process.3(5-6), 367–374 (2000). [CrossRef]
  6. A. Sabac, C. Gorecki, M. Jozwik, L. Nieradko, C. Meunier, and K. Gut, “Technology and performances of silicon oxynitride waveguides for optomechanical sensors fabricated by plasma-enhanced chemical vapor deposition,” J. Eur. Opt. Soc.2, 07026 (2007). [CrossRef]
  7. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006). [CrossRef]
  8. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2010).
  9. M. Lipson, “Switching light on a silicon chip,” Opt. Mater.27(5), 731–739 (2005). [CrossRef]
  10. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004), Chap. 4.
  11. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  12. G. Cocorullo, F. G. Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett.21(24), 2002–2004 (1996). [CrossRef] [PubMed]
  13. A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1378 (2005). [CrossRef]
  14. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous Silicon Waveguides and Interferometers for Low-Cost Silicon Optoelectronics,” Proc. SPIE3278, 286–292 (1998). [CrossRef]
  15. R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett.34(15), 2378–2380 (2009). [CrossRef] [PubMed]
  16. A. Kosarev, A. Torres, C. Zúñiga, A. Abramov, P. Rosales, and A. Sibaja, “Effect of hydrogen dilution on electronic properties of a-SiHx films deposited by low-frequency plasma,” J. Mater. Res.18(08), 1918–1925 (2003). [CrossRef]
  17. L. Pavesi and D. J. Lockwood, eds., Silicon Photonics (Springer-Verlag, 2004).
  18. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4(3), 182–187 (2010). [CrossRef]
  19. K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express15(26), 17761–17771 (2007). [CrossRef] [PubMed]
  20. G. Y. Sung, N. M. Park, T. Y. Kim, K. H. Kim, K. S. Cho, and J. H. Shin, “High Efficiency Silicon Visible Light Emitter using Silicon Nanocrystals in Silicon Nitride Matrix and Transparent Doping Layer,” 2nd International Conference on Group IV Photonics, Belgium, September 2005.
  21. M. Labrune, M. Moreno, and P. Roca i Cabarrocas, “Ultra-shallow junctions formed by quasi-epitaxial growth of boron and phosphorous-doped silicon films at 175°C by rf-PECVD,” Thin Solid Films518(9), 2528–2530 (2010). [CrossRef]
  22. Y. P. Chou and S. C. Lee, “Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys,” J. Appl. Phys.83(8), 4111–4123 (1998). [CrossRef]
  23. A. Kosarev, A. Torres, Y. Hernandez, R. Ambrosio, C. Zuniga, T. E. Felter, R. Asomoza, Y. Kudriavtsev, R. Silva-Gonzalez, E. Gomez-Barojas, A. Ilinski, and A. S. Abramov, “Silicon-germanium films deposited by low-frequency plasma-enhanced chemical vapor deposition: Effect of H2 and Ar dilution,” J. Mater. Res.21(01), 88–104 (2006). [CrossRef]
  24. C. Iliescu and B. Chen, “Thick and low-stress PECVD amorphous silicon for MEMS applications,” J. Micromech. Microeng.18(1), 015024 (2008). [CrossRef]
  25. A. M. Pérez, C. Zúñiga, F. J. Renero, and A. Torres, “Optical properties of amorphous silicon germanium obtained by low-frequency plasma-enhanced chemical vapor deposition from SiH4 + GeF4 and from SiH4 + GeH4,” Opt. Eng.44(4), 043801 (2005). [CrossRef]
  26. L. Vegard, “Die Konstitution der Mischkristalle und die Raumfülung der Atome,” Z. Phys.5(1), 17–26 (1921). [CrossRef]
  27. K. Shimakawa, “On the compositional dependence of the optical gap in amorphous semiconducting alloys,” J. Non-Cryst. Solids43(2), 229–244 (1981). [CrossRef]
  28. M. E. Wieser, “Atomic weights of the elements 2005 (IUPAC Technical Report),” Pure Appl. Chem.78(11), 2051–2066 (2006). [CrossRef]
  29. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E16(12), 1214–1222 (1983). [CrossRef]
  30. http://en.wikipedia.org/wiki/Beer-Lambert_law .
  31. E. G. Birgin, I. Chambouleyron, and J. M. Martínez, “Estimation of the Optical Constants and the Thickness of Thin Films Using Unconstrained Optimization,” J. Comput. Phys.151(2), 862–880 (1999), http://www.ime.usp.br/~egbirgin/puma/ . [CrossRef]
  32. D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D Appl. Phys.36(15), 1850–1857 (2003). [CrossRef]
  33. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003), Chap. 2.
  34. J. Singh, Optical Properties of Condensed Matter and Applications (Wiley, 2006), Chap. 3.
  35. K. Chew, S. F. Rusli, J. Yoon, Q. Ahn, V. Zhang, E. J. Ligatchev, T. Teo, T. Osipowicz, and F. Watt, “Gap state distribution in amorphous hydrogenated silicon carbide films deduced from photothermal deflection spectroscopy,” J. Appl. Phys.91(7), 4319–4325 (2002). [CrossRef]
  36. H. Kogelnik and V. Ramaswamy, “Scaling rules for thin-film optical waveguides,” Appl. Opt.13(8), 1857–1862 (1974). [CrossRef] [PubMed]
  37. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si on SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991). [CrossRef]
  38. S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol.16(10), 1851–1853 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited