OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 4 — Apr. 1, 2012
  • pp: 371–381

Persistent luminescence mechanisms: human imagination at work

Hermi F. Brito, Jorma Hölsä, Taneli Laamanen, Mika Lastusaari, Marja Malkamäki, and Lucas C. V. Rodrigues  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 4, pp. 371-381 (2012)
http://dx.doi.org/10.1364/OME.2.000371


View Full Text Article

Enhanced HTML    Acrobat PDF (1890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The present status and future progress of the mechanisms of persistent luminescence are critically treated with the present knowledge. The advantages to be achieved by a further need as well as the pitfalls of the excessive use of imagination are shown. As usual, in the beginning of the present era of persistent luminescence since the mid 1990s, the imagination played a more important role than the sparse solid experimental data and the chemical common sense and knowledge was largely ignored. Since some five years, the mechanistic studies seem to have reached the maturity and – perhaps deceivingly – it seems that there are only details to be solved. However, the development of red emitting nanocrystalline materials poses a challenge also to the more fundamental studies and interpretation. The questions still luring in the darkness include the problems how the increased surface area affects the defect structure and how the “persistent energy transfer” really works. There is still some light to be thrown onto these matters starting with agreeing on the terminology: the term phosphorescence should be abandoned altogether. The long lifetime of persistent luminescence is due to trapping of excitation energy, not to the forbidden nature of the luminescent transition. However, the technically well-suited term “afterglow” should be retained for harmful, short persistent luminescence.

© 2012 OSA

OCIS Codes
(160.2220) Materials : Defect-center materials
(160.2540) Materials : Fluorescent and luminescent materials
(160.2900) Materials : Optical storage materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: January 13, 2012
Revised Manuscript: February 25, 2012
Manuscript Accepted: February 26, 2012
Published: March 2, 2012

Virtual Issues
Persistent Phosphors (2012) Optical Materials Express
(2012) Advances in Optics and Photonics

Citation
Hermi F. Brito, Jorma Hölsä, Taneli Laamanen, Mika Lastusaari, Marja Malkamäki, and Lucas C. V. Rodrigues, "Persistent luminescence mechanisms: human imagination at work," Opt. Mater. Express 2, 371-381 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-4-371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. N. Harvey, A History of luminescence: From the Earliest Times Until 1900 (Amer. Phil. Soc., Philadelphia, USA, 1957), Chapter VIII.
  2. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006). [CrossRef] [PubMed]
  3. P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+; Dy3+,” Phys. Status Solidi B242(1), R7–R9 (2005). [CrossRef]
  4. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004). [CrossRef]
  5. H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011). [CrossRef]
  6. R. Hahn, S. Berger, and P. Schmuki, “Bright visible luminescence of self-organized ZrO2 nanotubes,” J. Solid State Electrochem.14(2), 285–288 (2010). [CrossRef]
  7. J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).
  8. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010). [CrossRef]
  9. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997).
  10. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, Germany, 1994).
  11. D. Jia and W. M. Yen, “Trapping mechanism associated with electron delocalization and tunneling of CaAl2O4:Ce3+, a persistent phosphor,” J. Electrochem. Soc.150(3), H61–H65 (2003). [CrossRef]
  12. X. Wang and D. Jia, “Long persistent phosphors,” in Phosphor Handbook, 2nd ed., S. Shionoya, W. M. Yen, and H. Yamamoto, eds. (CRC Press, Boca Raton, FL, USA, 2007), pp. 793–818.
  13. International workshop on Persistent Phosphors (Phosphoros 2011) Sept 19 and 20, 2011, Universiteit Ghent, Ghent, Belgium, http://www.lumilab.ugent.be/?q=phosphoros (accessed on Dec. 30, 2011).
  14. M. R. Thompson, “Psychophysical evaluations of modulated color rendering for energy performance of LED-based architectural lighting,” PhD thesis (Massachusetts Institute of Technology, Cambridge, MA, USA, 2007).
  15. H. Rupp, Die Leuchtmassen und ihre Verwendung - eine Einführung in Fluoreszenz und Phosphoreszenz der festen Körper (Gebr. Bornträger, Berlin, Germany, 1937).
  16. Fortunius Licetus, Litheosphorus Sive de Lapide Bononiensi (Università di Bologna, Bologna, Italy, 1640).
  17. M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).
  18. V. Klatt and P. Lenard, “Über die Phosphoreszenzen des Kupfers Wismuths und Mangans in den Erdalkalisulfiden,” Wied. Ann. (Ann. Phys. Chem. Neue Folge)38, 90–107 (1889).
  19. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72-74, 287–289 (1997). [CrossRef]
  20. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996). [CrossRef]
  21. T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001). [CrossRef]
  22. Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002). [CrossRef]
  23. J. Hölsä (Department of Chemistry, University of Turku, FI-20014 Turku, Finland) and A. J. J. Bos, P. Dorenbos, M. Lastusaari, T. Laamanen, and M. Malkamäki are preparing a manuscript to be called “Thermoluminescence and persistent luminescence excitation properties of Sr2MgSi2O7:Eu2+,Dy3+.”
  24. J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).
  25. A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011). [CrossRef]
  26. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007). [CrossRef] [PubMed]
  27. W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998). [CrossRef]
  28. B. Zhang, C. Zhao, and D. Chen, “Synthesis of the long-persistence phosphor CaAl2O4:Eu2+, Dy3+, Nd3+ by combustion method and its luminescent properties,” Luminescence25(1), 25–29 (2010). [PubMed]
  29. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005). [CrossRef]
  30. S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009). [CrossRef]
  31. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011). [CrossRef]
  32. Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004). [CrossRef]
  33. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Persistent luminescence mechanism of the CdSiO3:Tb3+ phosphors,” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 69–70 (2011).
  34. A. Nag and T. R. N. Kutty, “The mechanism of long phosphorescence of SrAl2−xBxO4 (0<x<0.2) and Sr4Al14−xBxO25 (0.1<x<0.4) co-doped with Eu2+ and Dy3+,” Mater. Res. Bull.39(3), 331–342 (2004). [CrossRef]
  35. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005). [CrossRef]
  36. P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004). [CrossRef]
  37. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express (to be published).
  38. D. Jia, X. J. Wang, and W. M. Yen, “Electron traps in Tb3+-doped CaAl2O4,” Chem. Phys. Lett.363(3-4), 241–244 (2002). [CrossRef]
  39. T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009). [CrossRef]
  40. J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009). [CrossRef]
  41. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).
  42. T. Laamanen, “Defects in persistent luminescence materials,” PhD thesis (University of Turku, Turku, Finland, 2011).
  43. J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
  44. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011). [CrossRef]
  45. J. Hölsä (Department of Chemistry, University of Turku, FI-20014 Turku, Finland) and M. Lindström, A. Kotlov, T. Laamanen, M. Lastusaari, M. Malkamäki, H. F. Brito, L. C. V. Rodrigues, and E. Welter are preparing a manuscript to be called “Persistent luminescence of rare earth co-doped Sr3SiO5:Eu2+,R3+.”
  46. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011). [CrossRef] [PubMed]
  47. Eye spectral and intensity response, contrast sensitivity, TelescopeOptics.net, http://www.telescope-optics.net/eye_spectral_response.htm (accessed on Dec. 30, 2011).
  48. D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express18(25), 26293–26299 (2010). [CrossRef] [PubMed]
  49. J. Hölsä, H. F. Brito, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence of Eu3+,Ti3+ doped Y2O2S: A hole trapping mechanism?” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 71–72 (2011).
  50. Y. Murayama, “Phosphorescent paints,” in Phosphor Handbook, 2nd ed., S. Shionoya, W. M. Yen, and H. Yamamoto, eds. (CRC Press, Boca Raton, FL, USA, 2007), pp. 789–792.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited