OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 4 — Apr. 1, 2012
  • pp: 382–390

Persistent luminescence behavior of materials doped with Eu2+ and Tb3+

Lucas C. V. Rodrigues, Hermi F. Brito, Jorma Hölsä, and Mika Lastusaari  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 4, pp. 382-390 (2012)
http://dx.doi.org/10.1364/OME.2.000382


View Full Text Article

Enhanced HTML    Acrobat PDF (1364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, the persistent luminescence mechanisms of Tb3+ (in CdSiO3) and Eu2+ (in BaAl2O4) based on solid experimental data are compared. The photoluminescence spectroscopy shows the different nature of the inter- and intraconfigurational transitions for Eu2+ and Tb3+, respectively. The electron is the charge carrier in both mechanisms, implying the presence of electron acceptor defects. The preliminary structural analysis shows a free space in CdSiO3 able to accommodate interstitial oxide ions needed by charge compensation during the initial preparation. The subsequent annealing removes this oxide leaving behind an electron trap. Despite the low band gap energy for CdSiO3, determined with synchrotron radiation UV-VUV excitation spectroscopy of Tb3+, the persistent luminescence from Tb3+ is observed only with UV irradiation. The need of high excitation energy is due to the position of 7F6 level deep below the bottom of the conduction band, as determined with the 4f8→4f75d1 and the ligand-to-metal charge-transfer transitions. Finally, the persistent luminescence mechanisms are constructed and, despite the differences, the mechanisms for Tb3+ and Eu2+ proved to be rather similar. This similarity confirms the solidity of the interpretation of experimental data for the Eu2+ doped persistent luminescence materials and encourages the use of similar models for other persistent luminescence materials.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2900) Materials : Optical storage materials
(160.5690) Materials : Rare-earth-doped materials
(260.3800) Physical optics : Luminescence
(300.2140) Spectroscopy : Emission

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: January 3, 2012
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 2, 2012
Published: March 6, 2012

Virtual Issues
Persistent Phosphors (2012) Optical Materials Express

Citation
Lucas C. V. Rodrigues, Hermi F. Brito, Jorma Hölsä, and Mika Lastusaari, "Persistent luminescence behavior of materials doped with Eu2+ and Tb3+," Opt. Mater. Express 2, 382-390 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-4-382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006). [CrossRef] [PubMed]
  2. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996). [CrossRef]
  3. Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002). [CrossRef]
  4. Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001). [CrossRef]
  5. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).
  6. J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009). [CrossRef]
  7. T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys.86(7), 3729–3733 (1999). [CrossRef]
  8. C. Liu, G. Che, Z. Xu, and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor,” J. Alloys Compd.474(1-2), 250–253 (2009). [CrossRef]
  9. J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009). [CrossRef]
  10. J. Fu, “Orange and red emitting long-lasting phosphors MO:Eu3+ (M = Ca, Sr, Ba),” Electrochem. Solid-State Lett.3(7), 350–351 (1999). [CrossRef]
  11. T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008). [CrossRef]
  12. X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009). [CrossRef]
  13. Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin.126(2), 822–826 (2007). [CrossRef]
  14. J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012). [CrossRef]
  15. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010). [CrossRef]
  16. L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010). [CrossRef]
  17. P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004). [CrossRef]
  18. Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007). [CrossRef]
  19. S. Ekambaram, K. C. Patil, and M. Maaza, “Synthesis of lamp phosphors: facile combustion approach,” J. Alloys Compd.393(1-2), 81–92 (2005). [CrossRef]
  20. B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+,Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C,” Physica B404(22), 4440–4444 (2009). [CrossRef]
  21. HASYLAB, Beamline I: SUPERLUMI, http://hasylab.desy.de/facilities/doris_iii/beamlines/i_superlumi (accessed on Dec. 20, 2011).
  22. Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem.15(37), 4025–4031 (2005). [CrossRef]
  23. A. V. S. Lourenço, L. C. V. Rodrigues, C. A. Kodaira, R. Stefani, H. F. Brito, M. C. F. C. Felinto, and J. Hölsä, “Persistent luminescence BaAl2O4:Eu2+,Dy3+ phosphor encapsulated in silica: water resistance,” in Proc. Int. Conf. Adv. Mater. (Braz. Mater. Res. Soc.), Rio de Janeiro-RJ, Brazil, September 20–25, 2009, BB556. http://www.sbpmat.org.br/icam2009/pdf/BB556.pdf .
  24. F. A. Kröger and H. J. Vink, in Proc. Intern. Colloq. “Semiconductors and phosphors” (Interscience Publishers, Inc., New York, 1958), p. 17.
  25. M. Weil, “Parawollastonite-type Cd3[Si3O9],” Acta Crystallogr. Sect. E Struct. Rep. Online61(6), i102–i104 (2005). [CrossRef]
  26. K. Brandenburg, Diamond v.3.2g, Crystal Impact: Bonn, Germany, 2011.
  27. P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994). [CrossRef] [PubMed]
  28. T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991). [CrossRef]
  29. P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd.488(2), 568–573 (2009). [CrossRef]
  30. P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003). [CrossRef]
  31. M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited