OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 4 — Apr. 1, 2012
  • pp: 391–404

Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients

Pi-Cheng Law, André Croteau, and Peter D. Dragic  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 4, pp. 391-404 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present measurements and modeling of the effect of P2O5 doping on the strain sensitivity coefficients of silica fibers. In particular, the Brillouin gain spectrum of a heavily P2O5-doped fiber is measured and investigated at different strains. We provide measurements of the strain-optic coefficient (SOC) and the strain-acoustic coefficient (SAC), obtained to be + 0.139 and + 9854m/sec/ε, respectively, both of which are less than the pure silica values. The Pockels’ coefficients p11 and p12 for bulk P2O5 are also estimated via Brillouin gain measurements. Using the strain coefficients, the modeled and unique slopes of the Stokes’-shift-versus-strain curves for the four observed acoustic modes in the fiber each lie within 2% of the measured values.

© 2012 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2300) Fiber optics and optical communications : Fiber measurements
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Materials for Fiber Optics

Original Manuscript: January 3, 2012
Revised Manuscript: February 24, 2012
Manuscript Accepted: March 1, 2012
Published: March 6, 2012

Pi-Cheng Law, André Croteau, and Peter D. Dragic, "Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients," Opt. Mater. Express 2, 391-404 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express17(18), 15685–15699 (2009). [CrossRef] [PubMed]
  2. P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011). [CrossRef]
  3. H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol.7(1), 45–64 (2001). [CrossRef]
  4. P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express1(4), 686–699 (2011). [CrossRef]
  5. P. D. Dragic, “Simplified model for the effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009). [CrossRef]
  6. N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett.13(7), 595–597 (1988). [CrossRef] [PubMed]
  7. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993). [CrossRef]
  8. P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite-element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010). [CrossRef]
  9. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004). [CrossRef]
  10. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt.17(18), 2867–2869 (1978). [CrossRef] [PubMed]
  11. V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011). [CrossRef]
  12. A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988). [CrossRef]
  13. A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE1798, 280–285 (1993). [CrossRef]
  14. S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011). [CrossRef]
  15. P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009). [CrossRef]
  16. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt.11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  17. C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett.14(16), 880–882 (1989). [CrossRef] [PubMed]
  18. G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980). [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995), Chapter 9.
  20. A. A. Higazy, B. Bridge, A. Hussein, and M. A. Ewaida, “Elastic constants and structure of the vitreous system ZnO-P2O5,” J. Acoust. Soc. Am.86(4), 1453–1458 (1989). [CrossRef]
  21. M. Guignard, L. Albrecht, and J. W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater.19(2), 286–290 (2007). [CrossRef]
  22. A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008). [CrossRef]
  23. K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc.67(10), 700–704 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited