OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 4 — Apr. 1, 2012
  • pp: 443–451

Tunable photoluminescence properties of Eu(II)- and Sm(III)-coactivated Ca9Y(PO4)7 and energy transfer between Eu(II) and Sm(III)

Huaiyong Li, Hyun Kyoung Yang, Byung Kee Moon, Byung Chun Choi, Jung Hyun Jeong, Kiwan Jang, Ho Sueb Lee, and Soung Soo Yi  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 4, pp. 443-451 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single-phased tunable color conversion phosphor for WLED was prepared by coactivating Ca9Y(PO4)7 with Eu2+ and Sm3+ ions. The structure, UV-visible and photoluminescence spectra of the phosphor were studied as a function of annealing atmosphere and concentration ratio of Eu2+/Sm3+. The coexistence of Eu2+ and Sm3+ was achieved by annealing the phosphor in a reducing atmosphere. The as-obtained phosphors showed a blended emission of blue-green and orange-red light upon near-UV excitation. White light emission was realized by adjusting the concentration ratio. Energy transfer and dominant interaction between Eu2+ and Sm3+ was also studied.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: February 16, 2012
Revised Manuscript: March 1, 2012
Manuscript Accepted: March 2, 2012
Published: March 16, 2012

Huaiyong Li, Hyun Kyoung Yang, Byung Kee Moon, Byung Chun Choi, Jung Hyun Jeong, Kiwan Jang, Ho Sueb Lee, and Soung Soo Yi, "Tunable photoluminescence properties of Eu(II)- and Sm(III)-coactivated Ca9Y(PO4)7 and energy transfer between Eu(II) and Sm(III)," Opt. Mater. Express 2, 443-451 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today54(12), 42–47 (2001). [CrossRef]
  2. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  3. R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett.99(17), 171115 (2011). [CrossRef]
  4. C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011). [CrossRef]
  5. E. Matioli, S. Brinkley, K. M. Kelchner, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “Polarized light extraction in m-plane GaN light-emitting diodes by embedded photonic-crystals,” Appl. Phys. Lett.98(25), 251112 (2011). [CrossRef]
  6. S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum-well structures with Ga- and N-faces,” Jpn. J. Appl. Phys.50(7), 072101 (2011). [CrossRef]
  7. E. Rangel, E. Matioli, Y.-S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011). [CrossRef]
  8. Y. Taniyasu and M. Kasu, “Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices,” Appl. Phys. Lett.99(25), 251112 (2011). [CrossRef]
  9. X. H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photonics J.3(3), 489–499 (2011). [CrossRef]
  10. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011). [CrossRef]
  11. J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett.98(17), 171111 (2011). [CrossRef]
  12. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  13. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011). [CrossRef]
  14. S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. (Bert) Hintzen, R. Seshadri, S. Nakamura, and S. P. DenBaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett.99(24), 241106 (2011). [CrossRef]
  15. H.-C. Kuo, C.-W. Hung, H.-C. Chen, K.-J. Chen, C.-H. Wang, C.-W. Sher, C.-C. Yeh, C.-C. Lin, C.-H. Chen, and Y.-J. Cheng, “Patterned structure of remote phosphor for phosphor-converted white LEDs,” Opt. Express19(S4Suppl 4), A930–A936 (2011). [CrossRef] [PubMed]
  16. Y. Zhang, L. Wu, M. Ji, B. Wang, Y. Kong, and J. Xu, “Structure and photoluminescence properties of KSr4(BO3)3:Eu3+ red-emitting phosphor,” Opt. Mater. Express2(1), 92–102 (2012). [CrossRef]
  17. T. Justel, “Luminescent materials for phosphor-converted LEDs,” in Luminescence From Theory to Applications, C. Ronda, ed. (WILEY-VCH Verlag GmbH & Co. KGaA, 2008), pp. 179–190.
  18. J. Silver and R. Withnall, “Color conversion phosphors for LEDs,” in Luminescent Materials and Applications, A. Kitai, ed. (John Wiley & Sons, Ltd., 2008), pp. 75–110.
  19. F. Xiao, Y. N. Xue, Y. Y. Ma, and Q. Y. Zhang, “Ba2Ca(B3O6)2:Eu2+,Mn2+: A potential tunable blue-white-red phosphors for white light-emitting diodes,” Physica B405(3), 891–895 (2010). [CrossRef]
  20. W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater.17(15), 3883–3888 (2005). [CrossRef]
  21. W.-J. Yang and T.-M. Chen, “White-light generation and energy transfer in SrZn2(PO4)2:Eu,Mn phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett.88(10), 101903 (2006). [CrossRef]
  22. Y.-H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006). [CrossRef]
  23. B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and S. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12: Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett.63(15), 1329–1331 (2009). [CrossRef]
  24. K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6-x-yMgx-z(PO4)4:Euy2+,Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem.48(24), 11525–11532 (2009). [CrossRef] [PubMed]
  25. J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white-emitting phosphor,” Appl. Phys. Lett.85(17), 3696–3698 (2004). [CrossRef]
  26. C.-K. Chang and T.-M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mn through energy transfer,” Appl. Phys. Lett.90(16), 161901 (2007). [CrossRef]
  27. Z. Hao, J. Zhang, X. Zhang, X. Sun, Y. Luo, S. Lu, and X.-J. Wang, “White light emitting diode by using alpha-Ca2P2O7:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.90(26), 261113 (2007). [CrossRef]
  28. N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem.49(23), 10907–10913 (2010). [CrossRef] [PubMed]
  29. C.-H. Huang, T.-M. Chen, W.-R. Liu, Y.-C. Chiu, Y.-T. Yeh, and S.-M. Jang, “A single-phased emission-tunable phosphor Ca9Y(PO4)7:Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes,” ACS Appl. Mater. Interfaces2(1), 259–264 (2010). [CrossRef]
  30. N. Guo, H. You, Y. Song, M. Yang, K. Liu, Y. Zheng, Y. Huang, and H. Zhang, “White-light emission from a single-emitting-component Ca9Gd(PO4)7:Eu2+,Mn2+ phosphor,” J. Mater. Chem.20(41), 9061–9067 (2010). [CrossRef]
  31. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004). [CrossRef]
  32. H. A. Höppe, M. Daub, and M. C. Bröhmer, “Coactivation of α-Sr(PO3)2 and SrM(P2O7) (M = Zn, Sr) with Eu2+ and Mn2+,” Chem. Mater.19(25), 6358–6362 (2007). [CrossRef]
  33. C. Zhang, S. Huang, D. Yang, X. Kang, M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010). [CrossRef]
  34. C.-H. Huang, T.-W. Kuo, and T.-M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces2(5), 1395–1399 (2010). [CrossRef] [PubMed]
  35. F. Xiao, Y. N. Xue, and Q. Y. Zhang, “Ca2BO3Cl:Ce3+,Eu2+: A potential tunable yellow-white-blue-emitting phosphors for white light-emitting diodes,” Physica B404(20), 3743–3747 (2009). [CrossRef]
  36. W.-J. Yang and T.-M. Chen, “Ce3+/Eu2+ codoped Ba2ZnS3: A blue radiation-converting phosphor for white light-emitting diodes,” Appl. Phys. Lett.90(17), 171908 (2007). [CrossRef]
  37. C.-K. Chang and T.-M. Chen, “Sr3B2O6:Ce3+,Eu2+: A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett.91(8), 081902 (2007). [CrossRef]
  38. D. Jia and X.-J. Wang, “Alkali earth sulfide phosphors doped with Eu2+ and Ce3+ for LEDs,” Opt. Mater.30(3), 375–379 (2007). [CrossRef]
  39. Y. Song, G. Jia, M. Yang, Y. Huang, H. You, and H. Zhang, “Sr3Al2O5Cl2:Ce3+,Eu2+: A potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Appl. Phys. Lett.94(9), 091902 (2009). [CrossRef]
  40. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010). [CrossRef]
  41. M. P. Saradhi, V. Pralong, U. V. Varadaraju, and B. Raveau, “Facile chemical insertion of lithium in Eu0.33Zr2(PO4)3:An elegant approach for tuning the photoluminescence properties,” Chem. Mater.21(9), 1793–1795 (2009). [CrossRef]
  42. S. Nishiura and S. Tanabe, “Preparation and optical properties of Eu2+ and Sm3+ co-doped glass ceramic phosphors emitting white color by violet laser excitation,” J. Ceram. Soc. Jpn.116(1358), 1096–1099 (2008). [CrossRef]
  43. Z. Cui, R. Ye, D. Deng, Y. Hua, S. Zhao, G. Jia, C. Li, and S. Xu, “Eu2+/Sm3+ ions co-doped white light luminescence SrSiO3 glass-ceramics phosphor for White LED,” J. Alloy. Comp.509(8), 3553–3558 (2011). [CrossRef]
  44. T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, and W. Stręk, “Annihilation of the persistent luminescence of MAl2O4:Eu2+ by Sm3+ co-doping,” Radiat. Meas.38(4-6), 515–518 (2004). [CrossRef]
  45. V. Singh, J.-J. Zhu, and V. Natarajan, “Eu2+, Eu3+ and Sm3+ emission in SrAl12O19 phosphors prepared via combustion synthesis,” Phys. Status Solidi A203(8), 2058–2064 (2006). [CrossRef]
  46. X. Lü, W. Shu, Q. Fang, Q. Yu, and X. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007). [CrossRef]
  47. D. R. Lide, Handbook of Chemistry and Physics (CRC Press/Taylor and Francis, 2009).
  48. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953). [CrossRef]
  49. D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys.22(6), 1063–1070 (1954). [CrossRef]
  50. L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc.114(10), 1048–1053 (1967). [CrossRef]
  51. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–136 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited