OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 4 — Apr. 1, 2012
  • pp: 461–468

Ge2Sb1.5Bi0.5Te5 thin film as inorganic photoresist

Hongzhu Xi, Qian Liu, Ye Tian, Yongsheng Wang, Shengming Guo, and Maoyou Chu  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 4, pp. 461-468 (2012)
http://dx.doi.org/10.1364/OME.2.000461


View Full Text Article

Enhanced HTML    Acrobat PDF (5764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new phase change material Ge2Sb1.5Bi0.5Te5 (GSBT) with good optothermal effect has been developed as an inorganic photoresist. Masks based on the material can be easily fabricated by home-built laser direct writing (LDW) equipment, and as a result mask patterns have been successfully transferred onto Si substrates by reactive ion etching techniques. Experimental results indicate that maximum etching selectivity of Si to GSBT reaches up to 524:1, which is comparable with the traditional organic photoresists, and the high ratio is also explained theoretically. Because of the merits of the inorganic photoresist, it might prove useful in silicon-based microelectronics

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(220.3740) Optical design and fabrication : Lithography
(310.1860) Thin films : Deposition and fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Semiconductors

History
Original Manuscript: January 12, 2012
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 9, 2012
Published: March 21, 2012

Citation
Hongzhu Xi, Qian Liu, Ye Tian, Yongsheng Wang, Shengming Guo, and Maoyou Chu, "Ge2Sb1.5Bi0.5Te5 thin film as inorganic photoresist," Opt. Mater. Express 2, 461-468 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-4-461


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature406(6799), 1027–1031 (2000). [CrossRef] [PubMed]
  2. M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010). [CrossRef]
  3. D. V. Myagkov, M. O. Nestoklon, and E. L. Portnoi, “Simple and effective algorithm of inorganic resist As2S3 development simulation,” Proc. SPIE6732, 67321V (2007). [CrossRef]
  4. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004). [CrossRef]
  5. V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008). [CrossRef]
  6. V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997). [CrossRef]
  7. V. I. Min’ko, P. E. Shepeliavyi, I. Z. Indutnyy, and O. S. Litvin, “Fabrication of silicon grating structures using interference lithography and chalcogenide inorganic photoresist,” Semicond. Phys., Quantum Electron. Optoelectron.10(1), 40–44 (2007).
  8. K. P. Chiu, K. F. Lai, S. C. Yen, and D. P. Tsai, “Surface plasmon polariton coupling between nano recording marks and their effect on optical read-out signal,” Opt. Rev.16(3), 326–331 (2009). [CrossRef]
  9. B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010). [CrossRef]
  10. W. P. Risk, C. T. Rettner, and S. Raoux, “Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method,” Appl. Phys. Lett.94(10), 101906 (2009). [CrossRef]
  11. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004). [CrossRef]
  12. H. Jain and M. Vlcek, “Glasses for lithography,” J. Non-Cryst. Solids354(12-13), 1401–1406 (2008). [CrossRef]
  13. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004). [CrossRef] [PubMed]
  14. M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008). [CrossRef]
  15. Z. M. Sun, J. Zhou, and R. Ahuja, “Unique melting behavior in phase-change materials for rewritable data storage,” Phys. Rev. Lett.98(5), 055505 (2007). [CrossRef] [PubMed]
  16. K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007). [CrossRef]
  17. C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009). [CrossRef]
  18. J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007). [CrossRef]
  19. S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008). [CrossRef]
  20. C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010). [CrossRef] [PubMed]
  21. J. H. Kim, “Effects of a metal layer on selective etching of a Ge5Sb75Te20 phase-change film,” Semicond. Sci. Technol.23(10), 105009 (2008). [CrossRef]
  22. T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001). [CrossRef]
  23. W. K. Njoroge, H. W. Woltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol. A20(1), 230–232 (2002). [CrossRef]
  24. G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008). [CrossRef]
  25. R. Legtenberg, H. Jansen, M. D. Boer, and M. Elwenspoek, “Anisotrapic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures,” J. Electrochem. Soc.142(6), 2020–2028 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited