OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 4 — Apr. 1, 2012
  • pp: 469–477

Optical properties of Mn in regrown GaN-based epitaxial layers

Feng-Wen Huang, Jinn-Kong Sheu, Shang-Ju Tu, Po-Cheng Chen, Yu-Hsiang Yeh, Ming-Lun Lee, Wei-Chih Lai, Wen-Che Tsai, and Wen-Hao Chang  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 4, pp. 469-477 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The memory effect and redistribution of manganese (Mn) into subsequently regrown GaN-based epitaxial layers by metalorganic chemical vapor deposition were revealed. Low-temperature up-converted photoluminescence (UPL) and the secondary ion mass spectrometry were performed on GaN-based epitaxial samples with and without Mn doping to study the effect of residual Mn on optical property. UPL emission, which originated from residual Mn doping in regrown InGaN quantum wells (QWs) because of the memory effect of the reactor, could be eliminated in an air-exposed and H2-baking manner prior to the regrowth of the QWs. Considerable residual Mn background level and slow decay rate of Mn concentration tail were also observed in the regrown epitaxial layers, which could be attributed to the memory effect or surface segregation and diffusion from the Mn-doped underlying layer during regrowth in the Mn-free reactor.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.0250) Optical devices : Optoelectronics
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: March 7, 2012
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 22, 2012
Published: March 26, 2012

Feng-Wen Huang, Jinn-Kong Sheu, Shang-Ju Tu, Po-Cheng Chen, Yu-Hsiang Yeh, Ming-Lun Lee, Wei-Chih Lai, Wen-Che Tsai, and Wen-Hao Chang, "Optical properties of Mn in regrown GaN-based epitaxial layers," Opt. Mater. Express 2, 469-477 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics,” Mater. Sci. Eng. Rep.40(4), 137–168 (2003). [CrossRef]
  2. D. D. Awschalom and M. E. Flatte, “Challenges for semiconductor spintronics,” Nat. Phys.3(3), 153–159 (2007). [CrossRef]
  3. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997). [CrossRef]
  4. A. Luque and A. Martí, “A metallic intermediate band high efficiency solar cell,” Prog. Photovolt. Res. Appl.9(2), 73–86 (2001). [CrossRef]
  5. A. Martí, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009). [CrossRef]
  6. A. Luque and A. Martí, “Photovoltaics: towards the intermediate band,” Nat. Photonics5(3), 137–138 (2011). [CrossRef]
  7. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002). [CrossRef]
  8. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett.86(1), 013505 (2005). [CrossRef]
  9. T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells90(18-19), 3327–3338 (2006). [CrossRef]
  10. F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai, and W. H. Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection,” Opt. Express19(S6Suppl 6), A1211–A1218 (2011). [CrossRef] [PubMed]
  11. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000). [CrossRef] [PubMed]
  12. A. M. Mahros, M. O. Luen, A. Emara, S. M. Bedair, E. A. Berkman, N. A. El-Masry, and J. M. Zavada, “Magnetic and magnetotransport properties of (AlGaN/GaN):Mg/(GaMnN) heterostructures at room temperature,” Appl. Phys. Lett.90(25), 252503 (2007). [CrossRef]
  13. N. Nepal, M. O. Luen, J. M. Zavada, S. M. Bedair, P. Frajtag, and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films,” Appl. Phys. Lett.94(13), 132505 (2009). [CrossRef]
  14. M. H. Kane, M. Strassburg, A. Asghar, W. E. Fenwick, J. Senawiratne, Q. Song, C. J. Summers, Z. J. Zhang, N. Dietz, and I. T. Ferguson, “Alloying, co-doping, and annealing effects on the magnetic and optical properties of MOCVD-grown Ga1-xMnxN,” Mater. Sci. Eng. B126(2-3), 230–235 (2006). [CrossRef]
  15. M. H. Kane, S. Gupta, W. E. Fenwick, N. Li, E. H. Park, M. Strassburg, and I. T. Ferguson, “Comparative study of Mn and Fe incorporation into GaN by metalorganic chemical vapor deposition,” Phys. Status Solidi A204(1), 61–71 (2007). [CrossRef]
  16. I. A. Buyanova, M. Izadifard, L. Storasta, W. M. Chen, J. Kim, F. Ren, G. Thaler, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, J. I. Chyi, and J. M. Zavada, “Optical and electrical characterization of (Ga,Mn)N/InGaN multiquantum well light-emitting diodes,” J. Electron. Mater.33(5), 467–471 (2004). [CrossRef]
  17. I. A. Buyanova, M. Izadifard, W. M. Chen, J. Kim, F. Ren, G. Thaler, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, J. I. Chyi, and J. M. Zavada, “On the origin of spin loss in GaMnN/InGaN light-emitting diodes,” Appl. Phys. Lett.84(14), 2599–2601 (2004). [CrossRef]
  18. I. A. Buyanova, J. P. Bergman, W. M. Chen, G. Thaler, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim, F. Ren, F. V. Kyrychenko, C. J. Stanton, C. C. Pan, G. T. Chen, J. I. Chyi, and J. M. Zavada, “Optical study of spin injection dynamics in InGaN/GaN quantum wells with GaMnN injection layers,” J. Vac. Sci. Technol. B22(6), 2668–2672 (2004). [CrossRef]
  19. M. H. Ham, S. Yoon, Y. Park, L. Bian, M. Ramsteiner, and J. M. Myoung, “Electrical spin injection from room-temperature ferromagnetic (Ga, Mn)N in nitride-based spin-polarized light-emitting diodes,” J. Phys. Condens. Matter18(32), 7703–7708 (2006). [CrossRef] [PubMed]
  20. S. Hövel, N. C. Gerhardt, M. R. Hofmann, F. Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, W. Keune, H. Wende, O. Petracic, and K. Westerholt, “Electrical detection of photoinduced spins both at room temperature and in remanence,” Appl. Phys. Lett.92(24), 242102 (2008). [CrossRef]
  21. R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett.98(16), 162508 (2011). [CrossRef]
  22. B. T. Jonker, “Progress toward electrical injection of spin-polarized electrons into semiconductors,” Proc. IEEE91(5), 727–740 (2003). [CrossRef]
  23. X. Chen, S. J. Lee, and M. Moskovits, “Modification of the electronic properties of GaN nanowires by Mn doping,” Appl. Phys. Lett.91(8), 082109 (2007). [CrossRef]
  24. H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, “Control of spin precession in a spin-injected field effect transistor,” Science325(5947), 1515–1518 (2009). [CrossRef] [PubMed]
  25. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), and references therein.
  26. H. M. Cheong, B. Fluegel, M. C. Hanna, and A. Mascarenhas, “Photoluminescence up-conversion in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B58(8), R4254–R4257 (1998). [CrossRef]
  27. P. P. Paskov, P. O. Holtz, B. Monemar, J. M. Garcia, W. V. Schoenfeld, and P. M. Petroff, “Photoluminescence up-conversion in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett.77(6), 812–814 (2000). [CrossRef]
  28. K. J. Russell, I. Appelbaum, H. Temkin, C. H. Perry, V. Narayanamurti, M. P. Hanson, and A. C. Gossard, “Room-temperature electro-optic up-conversion via internal photoemission,” Appl. Phys. Lett.82(18), 2960–2962 (2003). [CrossRef]
  29. M. R. Olson, K. J. Russell, V. Narayanamurti, J. M. Olson, and I. Appelbaum, “Linear photon upconversion of 400 meV in an AlGalnP/GaInP quantum well heterostructure to visible light at room temperature,” Appl. Phys. Lett.88(16), 161108 (2006). [CrossRef]
  30. N. Kuroda, C. Sasaoka, A. Kimura, A. Usui, and Y. Mochizuki, “Precise control of pn-junction profiles for GaN-based LD structure using GaN substrates with low dislocation densities,” J. Cryst. Growth189–190, 551–555 (1998). [CrossRef]
  31. Y. Ohba and A. Hatano, “A study on strong memory effects for Mg doping in GaN metalorganic chemical vapor deposition,” J. Cryst. Growth145(1-4), 214–218 (1994). [CrossRef]
  32. H. Xing, D. S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S. P. Denbaars, and U. K. Mishra, “Memory effect and redistribution of Mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys.42(Part 1, No. 1), 50–53 (2003). [CrossRef]
  33. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  34. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011). [CrossRef]
  35. R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett.96(23), 231113 (2010). [CrossRef]
  36. R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett.99(17), 171115 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited