OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 4 — Apr. 1, 2012
  • pp: 478–489

Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 4, pp. 478-489 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The search for alternative plasmonic materials with improved optical properties, easier fabrication and integration capabilities over those of the traditional materials such as silver and gold could ultimately lead to real-life applications for plasmonics and metamaterials. In this work, we show that titanium nitride could perform as an alternative plasmonic material in the visible and near-infrared regions. We demonstrate the excitation of surface-plasmon-polaritons on titanium nitride thin films and discuss the performance of various plasmonic and metamaterial structures with titanium nitride as the plasmonic component. We also show that titanium nitride could provide performance that is comparable to that of gold for plasmonic applications and can significantly outperform gold and silver for transformation-optics and some metamaterial applications in the visible and near-infrared regions.

© 2012 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 3, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: February 28, 2012
Published: March 27, 2012

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva, "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths," Opt. Mater. Express 2, 478-489 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007). [CrossRef]
  3. D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004). [CrossRef] [PubMed]
  4. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, 2009).
  5. J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  6. C. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science315, 47–49 (2007). [CrossRef] [PubMed]
  7. V. Shalaev, “Transforming light,” Science322, 384–386 (2008). [CrossRef] [PubMed]
  8. J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  9. Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006). [CrossRef] [PubMed]
  10. S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).
  11. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007). [CrossRef]
  12. A. Kildishev and V. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008). [CrossRef]
  13. E. Narimanov and A. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009). [CrossRef]
  14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005). [CrossRef] [PubMed]
  15. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007). [CrossRef] [PubMed]
  16. V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005). [CrossRef]
  17. G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett.32, 53–55 (2007). [CrossRef]
  18. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  19. T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010). [CrossRef] [PubMed]
  20. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011). [CrossRef] [PubMed]
  21. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  22. G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010). [CrossRef]
  23. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010). [CrossRef]
  24. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011). [CrossRef]
  25. A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1, 883–889 (2011). [CrossRef]
  26. T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25, 38–44 (2000). [CrossRef]
  27. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1, 1090–1099 (2011). [CrossRef]
  28. D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.
  29. L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988). [CrossRef]
  30. S. Aouadi and M. Debessai, “Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering,” J. Vac. Sci. Technol. A22, 1975–1979 (2004). [CrossRef]
  31. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001). [CrossRef]
  32. B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985). [CrossRef]
  33. W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003). [CrossRef]
  34. V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16, 1186–1195 (2008). [CrossRef] [PubMed]
  35. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14, 13030–13042 (2006). [CrossRef] [PubMed]
  36. C. Davis, D. McKenzie, and R. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun.85, 70–82 (1991). [CrossRef]
  37. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46, 2503–2511 (1992). [CrossRef]
  38. K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010). [CrossRef] [PubMed]
  39. X. Ni, Z. Liu, and A.V. Kildishev, “PhotonicsDB: Optical Constants,” http://nanohub.org/resources/PhotonicsDB . (doi:10254/nanohub-r3692.10) (2010).
  40. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006). [CrossRef]
  41. S. Maier, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).
  42. M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,”Nanotechnol.21, 115201 (2010).
  43. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).
  44. Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010). [CrossRef]
  45. G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011). [CrossRef]
  46. G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).
  47. A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007). [CrossRef] [PubMed]
  48. V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71, 201101 (2005). [CrossRef]
  49. J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007). [CrossRef]
  50. S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  51. A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt.45, 2051–2062 (1998). [CrossRef]
  52. X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A100, 365–374 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited