OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 496–500

The dielectric function of PbS quantum dots in a glass matrix

Iwan Moreels, Detlef Kruschke, Peter Glas, and Jens W. Tomm  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 5, pp. 496-500 (2012)
http://dx.doi.org/10.1364/OME.2.000496


View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dielectric function of PbS quantum dots (Qdots) with diameters of 3.5-5.0 nm in glass matrix is determined from transmission measurements by Maxwell-Garnett effective medium theory combined with iterative Kramers-Kronig analysis. The algorithm used provides real and imaginary part of the dielectric function in the 200-1800 nm spectral range, for both Qdot-doped glasses as well as the PbS Qdots alone. The latter data are compared with the results obtained from colloidal PbS quantum dots and, within the limits of the experimental error, agreement is found.

© 2012 OSA

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(300.1030) Spectroscopy : Absorption
(260.2065) Physical optics : Effective medium theory
(160.4236) Materials : Nanomaterials

ToC Category:
Nanomaterials

History
Original Manuscript: December 12, 2011
Revised Manuscript: March 12, 2012
Manuscript Accepted: March 12, 2012
Published: April 2, 2012

Virtual Issues
Quantum Dots for Photonic Applications (2012) Optical Materials Express

Citation
Iwan Moreels, Detlef Kruschke, Peter Glas, and Jens W. Tomm, "The dielectric function of PbS quantum dots in a glass matrix," Opt. Mater. Express 2, 496-500 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-5-496


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett.81(16), 3539–3542 (1998). [CrossRef]
  2. G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005). [CrossRef]
  3. K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999). [CrossRef]
  4. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005). [CrossRef] [PubMed]
  5. S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007). [CrossRef]
  6. P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997). [CrossRef]
  7. L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005). [CrossRef]
  8. M. Kim and M. Yoda, “Infrared quantum dots for liquid-phase thermometry in silicon,” Meas. Sci. Technol.22(8), 085401 (2011). [CrossRef]
  9. I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010). [CrossRef]
  10. N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994). [CrossRef]
  11. K. E. Fox, T. Furukawa, and W. B. White, “Transition-metal ions in silicate melts. Part 2. Iron in sodium-silicate glasses,” Phys. Chem. Glasses23, 169–178 (1982).
  12. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009). [CrossRef] [PubMed]
  13. A. Sihvola, “Two main avenues leading to the Maxwell Garnett mixing rule,” J. Electromagn. Waves Appl.15(6), 715–725 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited