OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 501–509

Origin of room temperature broadband light emission and carrier dynamics in Ag ion-implanted Silicon nanocrystals

Akhilesh K. Singh, Karol G. Gryczynski, and Arup Neogi  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 5, pp. 501-509 (2012)
http://dx.doi.org/10.1364/OME.2.000501


View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We studied the origin of broad band light emission in the Ultraviolet (UV) to the red from silicon nanoparticles fabricated using a single low energy (32 keV) silver ion implantation with a fluence of 5*1015 ions/cm2 in crystalline Si. It is found from a systematic study of the annealing carried out at certain temperatures that the spectral characteristics in the UV and blue region remains unchanged except for the enhancement of light emission intensity due to annealing. The annealing results in nucleation of Ag nanoclusters in the vicinity of Si nanoparticles which enhances the emission intensity. Time-resolved photoluminescence (TRPL) measurement demonstrates that the emission originates from both highly localized defect bound excitons at the nanoscale Si interface, as well as surface and interface traps associated with the increased surface area of the Si nanocrystals. The emission in the UV is due to interband transitions from localized excitonic states at the interface of Si/SiO2 or from the surface of Si nanocrystals. The radiative efficiency of the UV and the green emission from the Si nanoparticles can be modified by the localized plasmons interaction induced by the nucleation of Silver nanoparticles on controlled annealing of the samples. Broadband emission ranging from the UV to the red wavelength range can be obtained on Ag implanted onto a single silicon substrate.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: December 13, 2011
Revised Manuscript: February 13, 2012
Manuscript Accepted: February 13, 2012
Published: April 2, 2012

Virtual Issues
Quantum Dots for Photonic Applications (2012) Optical Materials Express

Citation
Akhilesh K. Singh, Karol G. Gryczynski, and Arup Neogi, "Origin of room temperature broadband light emission and carrier dynamics in Ag ion-implanted Silicon nanocrystals," Opt. Mater. Express 2, 501-509 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-5-501


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990). [CrossRef]
  2. V. Lehmann and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett.58(8), 856–858 (1991). [CrossRef]
  3. S. S. Iyer and Y. H. Xie, “Light emission from silicon,” Science260(5104), 40–46 (1993). [CrossRef] [PubMed]
  4. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett.68(10), 1377–1379 (1996). [CrossRef]
  5. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001). [CrossRef] [PubMed]
  6. R. M. Sankaran, D. Holunga, R. C. Flagan, and K. P. Giapis, “Synthesis of blue luminescent si nanoparticles using atmospheric-pressure microdischarges,” Nano Lett.5(3), 537–541 (2005). [CrossRef] [PubMed]
  7. D. Zhang, R. M. Kolbas, P. D. Milewski, D. J. Lichtenwalner, A. I. Kingon, and J. M. Zavada, “Light emission from thermally oxidized silicon nanoparticles,” Appl. Phys. Lett.65(21), 2684–2686 (1994). [CrossRef]
  8. A. Arbouet, M. Carrada, F. Demangeot, V. Paillard, G. Ben Assayag, C. Bonafos, A. Claverie, S. Schamm, C. Dumas, J. Grisolia, M. A. F. Van den Boogaart, J. Brugger, and L. Doeswijk, “Photoluminescence characterization of few-nanocrystals electronic devices,” J. Lumin.121(2), 340–343 (2006). [CrossRef]
  9. L. J. Mitchell, O. W. Holland, A. Neogi, J. Li, and F. D. McDaniel, “Formation of optically active osmium silicide in silica using ion implantation and thermal annealing,” J. Non-Cryst. Solids352(23-25), 2408–2410 (2006). [CrossRef]
  10. L.-S. Liao, X.-M. Bao, N.-S. Li, X.-Q. Zheng, and N.-B. Min, “Blue-, green-, and red-light emission from Si+-implanted thermal SiO2 films on crystalline silicon,” J. Lumin.68(2-4), 199–204 (1996). [CrossRef]
  11. P. R. Poudel, J. A. Paramo, P. P. Poudel, D. R. Diercks, Y. M. Strzhemechny, B. Rout, and F. D. McDaniel, “Effects of thermal annealing on the structural and optical properties of carbon-implanted SiO2,” J. Nanosci. Nanotechnol. (2011), doi:. [CrossRef]
  12. B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002). [CrossRef]
  13. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Surface chemistry of silicon nanoclusters,” Phys. Rev. Lett.88(9), 097401 (2002). [CrossRef] [PubMed]
  14. G. Hadjisavvas and P. C. Kelires, “Structure and energetics of Si nanocrystals embedded in a-SiO2.,” Phys. Rev. Lett.93(22), 226104 (2004). [CrossRef] [PubMed]
  15. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter48(15), 11024–11036 (1993). [CrossRef] [PubMed]
  16. B. Delley and E. F. Steigmeier, “Quantum confinement in Si nanocrystals,” Phys. Rev. B Condens. Matter47(3), 1397–1400 (1993). [CrossRef] [PubMed]
  17. S. Öğüt, J. R. Chelikowsky, and S. Louie, “Quantum confinement and optical gaps in Si nanocrystals,” Phys. Rev. Lett.79(9), 1770–1773 (1997). [CrossRef]
  18. Al. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond.16, 772–775 (1982).
  19. A. K. Singh, K. G. Gryczynski, S. Y. Park, M. Kim, and A. Neogi, “Broad band light emission from Ag- ion implanted silicon nanocrystals,” Solid State Commun.151(20), 1405–1409 (2011). [CrossRef]
  20. A. K. Singh, K. G. Gryczynski, F. D. McDaniel, S. Y. Park, M. Kim, and A. Neogi, “Localized surface plasmon polariton enhanced radiative recombination in ion-implanted silicon emitters,” Appl. Phys. Express3(10), 102201 (2010). [CrossRef]
  21. X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005). [CrossRef]
  22. H. Chen, C. Li, Z. Jiao, Z. Yu, Z. Yang, Y. Jin, Z. Li, H. Song, Y. Gao, Y. Zhang, J. Zhu, M. Gong, and X. Sun, “Silica nano-rings and nano-hollows: Preparation and UV photoluminescence emission,” J. Non-Cryst. Solids354(40-41), 4562–4566 (2008). [CrossRef]
  23. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008). [CrossRef] [PubMed]
  24. X. L. Wu, S. J. Xiong, G. G. Siu, G. S. Huang, Y. F. Mei, Z. Y. Zhang, S. S. Deng, and C. Tan, “Optical emission from excess Si defect centers in Si nanostructures,” Phys. Rev. Lett.91(15), 157402 (2003). [CrossRef] [PubMed]
  25. L. Tsybeskov, J. Vandyshev, and P. Fauchet, “Blue emission in porous silicon: Oxygen-related photoluminescence,” Phys. Rev. B49(11), 7821–7824 (1994). [CrossRef]
  26. X.-W. Pan, M.-M. Shi, D.-X. Zheng, N. L. Liu, G. Wu, M. Wang, and H.-Z. Chen, “Room-temperature solution route to free-standing SiO2-capped Si nanocrystals with green luminescence,” Mater. Chem. Phys.117(2-3), 517–521 (2009). [CrossRef]
  27. D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots,” Nano Lett.2(7), 681–685 (2002). [CrossRef]
  28. A. Neogi, H. Morkoç, T. Kuroda, and A. Tackeuchi, “Coupling of spontaneous emission from GaN-AlN quantum dots into silver surface plasmons,” Opt. Lett.30(1), 93–95 (2005). [CrossRef] [PubMed]
  29. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett.69(14), 2033–2035 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited