OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 548–565

Effect of probe beam intensity on all-optical switching based on excited-state absorption

Parag Sharma and Sukhdev Roy  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 5, pp. 548-565 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically analyze the effect of probe beam intensity on all-optical switching based on nonlinear absorption, using the pump-probe configuration. To draw general inferences that are applicable to a wide range of polyatomic molecules, we consider as a typical example, switching in pharaonis phoborhodopsin (ppR) protein and its mutants that exhibit a complex photocycle similar to bacteriorhodopsin (bR), having a number of intermediates with respective absorption spectra spanning the entire visible region. The switching of the transmission of a cw probe beam by a pulsed pump beam has been studied in detail at different wavelength combinations. Interesting consequences emerge from the present analysis. It is shown that by controlling the probe intensity, the switching characteristics can be inverted, switching time can be reduced and the profile of the switched probe beam and the switching contrast can be controlled. For some cases, the switching contrast can also be maximized by optimizing the probe intensity. Increase in probe intensity also leads to increase in switching contrast under certain conditions. At particular spectral and kinetic conditions, the nonlinear optical material appears linear for a given probe intensity and pump-probe wavelengths, respectively. Variation in probe intensity thus provides an effective means to modify the switching characteristics instead of using mutants with different rate constants for a variety of nonlinear absorption based all-optical devices.

© 2012 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(230.1150) Optical devices : All-optical devices

ToC Category:
Nonlinear Optical Materials

Original Manuscript: January 3, 2012
Revised Manuscript: March 8, 2012
Manuscript Accepted: March 20, 2012
Published: April 6, 2012

Parag Sharma and Sukhdev Roy, "Effect of probe beam intensity on all-optical switching based on excited-state absorption," Opt. Mater. Express 2, 548-565 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  2. S. A. Haque and J. Nelson, “Physics. Toward organic all-optical switching,” Science327(5972), 1466–1467 (2010). [CrossRef] [PubMed]
  3. S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(4), 046603 (2006). [CrossRef] [PubMed]
  4. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics2(3), 185–189 (2008). [CrossRef]
  5. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon.2(1), 60–200 (2010). [CrossRef]
  6. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010). [CrossRef] [PubMed]
  7. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011). [CrossRef] [PubMed]
  8. X. Chen, J. Tao, G. Zou, W. Su, Q. Zhang, and P. Wang, “Thermosensitive silver/polydiacetylene nanocrystals with tunable nonlinear optical properties,” ChemPhysChem11(17), 3599–3603 (2010). [CrossRef] [PubMed]
  9. H. Abdeldayem, D. O. Frazier, and M. S. Paley, “An all-optical picosecond switch in polydiacetylene,” Appl. Phys. Lett.82(7), 1120–1122 (2003). [CrossRef]
  10. C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine,” Phys. Rev. A49(2), 1149–1157 (1994). [CrossRef] [PubMed]
  11. S. Roy and C. Yadav, “All-optical ultrafast logic gates based on saturable to reverse saturable absorption transition in CuPc-doped PMMA thin films,” Opt. Commun.284(19), 4435–4440 (2011). [CrossRef]
  12. C. Li, L. Zhang, R. Wang, Y. Song, and Y. J. Wang, “Dynamics of reverse saturable absorption and all-optical switching in C60,” J. Opt. Soc. Am. B11(8), 1356–1360 (1994). [CrossRef]
  13. H. Wang, H. Su, H. Qian, Z. Wang, X. Wang, and A. Xia, “Structure-dependent all-optical switching in graphene-nanoribbon-like molecules: fully conjugated tri(perylene bisimides),” J. Phys. Chem. A114(34), 9130–9135 (2010). [CrossRef] [PubMed]
  14. R. R. Dasari, M. M. Sartin, M. Cozzuol, S. Barlow, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear absorption properties of dendronised ruthenium(II) phthalocyanine and naphthalocyanine,” Chem. Commun. (Camb.)47(15), 4547–4549 (2011). [CrossRef] [PubMed]
  15. G. S. He, J. Zhu, A. Baev, M. Samoć, D. L. Frattarelli, N. Watanabe, A. Facchetti, H. Ågren, T. J. Marks, and P. N. Prasad, “Twisted π-system chromophores for all-optical switching,” J. Am. Chem. Soc.133(17), 6675–6680 (2011). [CrossRef] [PubMed]
  16. F. Z. Henari and S. Cassidy, “Non-linear optical properties and all-optical switching of congo red in solution,” Optik (Stuttg.) (to be published).
  17. K. Zhang, J. Li, W. Wang, J. Xiao, W. Yin, and L. Yu, “Enhancing the linear absorption and tuning the nonlinearity of TiO2 nanowires through the incorporation of Ag nanoparticles,” Opt. Lett.36(17), 3443–3445 (2011). [CrossRef] [PubMed]
  18. P. Sharma, S. Roy, and C. P. Singh, “Dynamics of all-optical switching in polymethine dye molecules,” Thin Solid Films477(1-2), 42–47 (2005). [CrossRef]
  19. C. P. Singh, K. S. Bindra, B. Jain, and S. M. Oak, “All-optical switching characteristics of metalloporphyrins,” Opt. Commun.245(1-6), 407–414 (2005). [CrossRef]
  20. A. Charas, A. L. Mendonça, J. Clark, L. Bazzana, A. Nocivelli, G. Lanzani, and J. Morgado, “Stimulated emission and ultrafast optical switching in a ter(9,9′-spirobifluorene)-co-methylmethacrylate copolymer,” J. Polym. Sci., B, Polym. Phys.49(1), 52–61 (2011). [CrossRef]
  21. M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelngth,” Opt. Quantum Electron.43(1-5), 49–58 (2012). [CrossRef]
  22. D. Oesterhelt, C. Bräuchle, and N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys.24(4), 425–478 (1991). [CrossRef] [PubMed]
  23. R. R. Birge, “Protein-based optical computing and memories,” IEEE Comput.25(11), 56–67 (1992). [CrossRef]
  24. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev.100(5), 1755–1776 (2000). [CrossRef] [PubMed]
  25. K. J. Wise and R. R. Birge, “Biomolecular photonics based on bacteriorhodopsin,” in CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed., F. Lenci and W. Horspool, eds. (CRC Press, 2003), Vols. 1 & 2, Chap. 135.
  26. K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol.20(9), 387–394 (2002). [CrossRef] [PubMed]
  27. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett.81(20), 3888–3890 (2002). [CrossRef]
  28. S. Roy, C. P. Singh, and K. P. J. Reddy, “Analysis of all optical switching in bacteriorhodopsin,” Curr. Sci.83, 623–627 (2002).
  29. K. P. J. Reddy, “Analysis of light-induced processes in bacteriorhodopsin and its application for spatial light modulation,” J. Appl. Phys.77(12), 6108–6113 (1995). [CrossRef]
  30. C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,” Opt. Commun.218(1-3), 55–66 (2003). [CrossRef]
  31. P. Sharma, “Enhancement of speed of digital operation in bacteriorhodopsin based photonic switches,” Optik (Stuttg.)121(4), 384–388 (2010). [CrossRef]
  32. S. Roy, P. Sharma, A. K. Dharmadhikari, and D. Mathur, “All-optical switching with bacteriorhodopsin,” Opt. Commun.237(4-6), 251–256 (2004). [CrossRef]
  33. Y. Huang, S. T. Wu, and Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express12(5), 895–906 (2004). [CrossRef] [PubMed]
  34. R. K. Banyal and B. R. Prasad, “High-contrast, all-optical switching in bacteriorhodopsin films,” Appl. Opt.44(26), 5497–5503 (2005). [CrossRef] [PubMed]
  35. J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett.89(18), 184103 (2006). [CrossRef]
  36. J. L. Spudich and H. Luecke, “Sensory rhodopsin II: functional insights from structure,” Curr. Opin. Struct. Biol.12(4), 540–546 (2002). [CrossRef] [PubMed]
  37. R. Moukhametzianov, J. P. Klare, R. Efremov, C. Baeken, A. Göppner, J. Labahn, M. Engelhard, G. Büldt, and V. I. Gordeliy, “Development of the signal in sensory rhodopsin and its transfer to the cognate transducer,” Nature440(7080), 115–119 (2006). [CrossRef] [PubMed]
  38. N. Kamo, K. Shimono, M. Iwamoto, and Y. Sudo, “Photochemistry and photoinduced proton-transfer by pharaonis phoborhodopsin,” Biochemistry Mosc.66(11), 1277–1282 (2001). [CrossRef] [PubMed]
  39. M. Miyazaki, J. Hirayama, M. Hayakawa, and N. Kamo, “Flash photolysis study on pharaonis phoborhodopsin from a haloalkaliphilic bacterium (Natronobacterium pharaonis),” Biochim. Biophys. Acta1140(1), 22–29 (1992). [CrossRef]
  40. Y. Imamoto, Y. Shichida, J. Hirayama, H. Tomioka, N. Kamo, and T. Yoshizawa, “Nanosecond laser photolysis of phoborhodopsin: from natronobacterium pharaonis appearance of KL and L intermediates in the photocycle at room temperature,” Photochem. Photobiol.56(6), 1129–1134 (1992). [CrossRef]
  41. P. Sharma, “Fast photonic switching in pharaonis phoborhodopsin protein molecules,” J. Biophotonics1(6), 526–530 (2008). [CrossRef]
  42. P. Sharma and S. Roy, “All-optical light modulation in pharaonis phoborhodopsin and its application to parallel logic gates,” J. Appl. Phys.96(3), 1687–1695 (2004). [CrossRef]
  43. P. Sharma, S. Roy, and C. P. Singh, “Low power spatial light modulator with pharaonis phoborhodopsin,” Thin Solid Films477(1-2), 227–232 (2005). [CrossRef]
  44. S. Roy, T. Kikukawa, P. Sharma, and N. Kamo, “All-optical switching in Pharaonis phoborhodopsin protein molecules,” IEEE Trans. Nanobioscience5(3), 178–187 (2006). [CrossRef] [PubMed]
  45. M. Iwamoto, K. Shimono, M. Sumi, and N. Kamo, “Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli,” Biophys. Chem.79(3), 187–192 (1999). [CrossRef] [PubMed]
  46. K. Takao, T. Kikukawa, T. Araiso, and N. Kamo, “Azide accelerates the decay of M-intermediate of pharaonis phoborhodopsin,” Biophys. Chem.73(1-2), 145–153 (1998). [CrossRef] [PubMed]
  47. Y. Sudo, M. Iwamoto, K. Shimono, and N. Kamo, “Association of pharaonis phoborhodopsin with its cognate transducer decreases the photo-dependent reactivity by water-soluble reagents of azide and hydroxylamine,” Biochim. Biophys. Acta1558(1), 63–69 (2002). [CrossRef] [PubMed]
  48. K. Shimono, M. Iwamoto, M. Sumi, and N. Kamo, “V108M mutant of pharaonis phoborhodopsin: substitution caused no absorption change but affected its M-state,” J. Biochem.124(2), 404–409 (1998). [PubMed]
  49. M. Iwamoto, Y. Sudo, K. Shimono, T. Araiso, and N. Kamo, “Correlation of the O-intermediate rate with the pKa of Asp-75 in the dark, the counterion of the Schiff base of pharaonis phoborhodopsin (sensory rhodopsin II),” Biophys. J.88(2), 1215–1223 (2005). [CrossRef] [PubMed]
  50. C. P. Singh and S. Roy, “Analysis of low power spatial light modulation characteristics of bacteriorhodopsin,” Optik (Stuttg.)113(9), 373–381 (2002). [CrossRef]
  51. Z. Bálint, M. Lakatos, C. Ganea, J. K. Lanyi, and G. Váró, “The nitrate transporting photochemical reaction cycle of the pharaonis halorhodopsin,” Biophys. J.86(3), 1655–1663 (2004). [CrossRef] [PubMed]
  52. S. Roy and P. Sharma, “Analysis of all-optical light modulation in proteorhodopsin protein molecules,” Optik (Stuttg.)119(4), 192–202 (2008). [CrossRef]
  53. L. Ujj, S. Devanathan, T. E. Meyer, M. A. Cusanovich, G. Tollin, and G. H. Atkinson, “New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy,” Biophys. J.75(1), 406–412 (1998). [CrossRef] [PubMed]
  54. S. Roy and K. Kulshrestha, “All-optical switching in plant blue light photoreceptor phototropin,” IEEE Trans. Nanobioscience5(4), 281–287 (2006). [CrossRef] [PubMed]
  55. Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, and J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140°C in two-dimensional films,” Nature366(6450), 48–50 (1993). [CrossRef]
  56. E. P. Lukashev and B. Robertson, “Bacteriorhodopsin retains its light-induced proton-pumping function after being heated to 140°C,” Bioelectrochem. Bioenerg.37(2), 157–160 (1995). [CrossRef]
  57. Y. Sudo, M. Yamabi, M. Iwamoto, K. Shimono, and N. Kamo, “Interaction of Natronobacterium pharaonis phoborhodopsin (sensory rhodopsin II) with its cognate transducer probed by increase in the thermal stability,” Photochem. Photobiol.78(5), 511–516 (2003). [CrossRef] [PubMed]
  58. S. Schenkl, F. van Mourik, N. Friedman, M. Sheves, R. Schlesinger, S. Haacke, and M. Chergui, “Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4101–4106 (2006). [CrossRef] [PubMed]
  59. S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low-power computing circuits,” J. Appl. Phys.107(5), 053115 (2010). [CrossRef]
  60. S. Roy, P. Sethi, J. Topolancik, and F. Vollmer, “All-optical reversible logic gates with bacteriorhodopsin protein coated microresonators,” Adv. Opt. Technol.2012, 727206 (2012). [CrossRef]
  61. P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett.95(25), 253601 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited