OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 566–577

Broadband spontaneous emission rate enhancement through the design of plasmonic nanoantennas

Renaud A. L. Vallée, Mélanie Ferrié, Hassan Saadaoui, and Serge Ravaine  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 5, pp. 566-577 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate and experimentally demonstrate a new route to controllably manipulate the spontaneous decay rate of dipole emitters in coupled plasmonic modes. The structure under investigation is an hexagonal close-packed array of gold core - silica shell nanoparticles (NPs) sandwiched between two gold films. We show that the interaction of localized and propagating surface plasmon polaritons can dramatically enhance the spontaneous emission rate of quantum emitters (rhodamine isothiocyanate) grafted in the NP silica shell. This strong enhancement (70 – 100 times) further occurs on the whole, broadband emission spectrum (565 nm to 640 nm) of the emitters.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 9, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: March 26, 2012
Published: April 6, 2012

Renaud A. L. Vallée, Mélanie Ferrié, Hassan Saadaoui, and Serge Ravaine, "Broadband spontaneous emission rate enhancement through the design of plasmonic nanoantennas," Opt. Mater. Express 2, 566-577 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nanooptics of Surface Plasmon Polaritons,” Phys. Rep., Rev. Sect. Phys. Lett.408, 131–314 (2005).
  2. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  3. K. L. Kelly, E. Coronado, L.L. Zhao, and G. G. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668–677 (2003). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature424, 824–860 (2003). [CrossRef] [PubMed]
  5. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011). [CrossRef] [PubMed]
  6. A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006). [CrossRef]
  7. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8, 4391–4397 (2008). [CrossRef]
  8. S. Wedge and W. L. Barnes, “Surface Plasmon-Polariton Mediated Light Emission through Thin Metal Films,” Opt. Express12, 3673–3685 (2004). [CrossRef] [PubMed]
  9. J. Vuckovic, M. Loncar, and A Scherer, “Surface Plasmon Enhanced Light-Emitting Diode,” IEEE J. Quantum Electron.36, 1131–1144 (2000). [CrossRef]
  10. J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater.18, 1267–1270 (2006). [CrossRef]
  11. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res.41, 1049–1057 (2008). [CrossRef] [PubMed]
  12. H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening Plasmonic Materials Using Pyramidal Gratings,” Proc. Natl. Acad. Sci. U.S.A.105, 20146–20151 (2008). [CrossRef] [PubMed]
  13. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006). [CrossRef] [PubMed]
  14. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005). [CrossRef] [PubMed]
  15. W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett.52, 1041–1044 (1984). [CrossRef]
  16. H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett.80, 5663–5666 (1998). [CrossRef]
  17. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett.30, 3404–3406 (2005). [CrossRef]
  18. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin substrate film,” Phys. Rev. B75, 235426 (2007). [CrossRef]
  19. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34, 244–246 (2009). [CrossRef] [PubMed]
  20. K. H. Drexhage, Progress in Optics, E. Wolf, ed. (North-Holland Amsterdam, 1974).
  21. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006). [CrossRef]
  22. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett.7, 2871–2875 (2007). [CrossRef] [PubMed]
  23. J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecules fluorescence,” Opt. Express17, 13532–13540 (2009). [CrossRef] [PubMed]
  24. L. K. Ausman and G. C. Schatz, “On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres,” J. Chem. Phys.131, 084708 (2009). [CrossRef] [PubMed]
  25. C. Vandenbem, D. Brayer, L. S. Froufe Pérez, and R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B81, 085444 (2010). [CrossRef]
  26. M. Ferrié, N. Pinna, S. Ravaine, and R. A. L. Vallée, “Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas,” Opt. Express19, 17697–17712 (2011). [CrossRef] [PubMed]
  27. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004). [CrossRef]
  28. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).
  29. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995). [CrossRef] [PubMed]
  30. P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Lett.4, 2209–2213 (2004). [CrossRef]
  31. J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007). [CrossRef]
  32. R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006). [CrossRef]
  33. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater.12, 306–313 (2000). [CrossRef]
  34. C. Graf and A. van Blaaderen, “Metallodielectric Colloidal CoreShell Particles for Photonic Applications,” Langmuir18, 524–534 (2002). [CrossRef]
  35. X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009). [CrossRef]
  36. S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001). [CrossRef]
  37. P. Massé and S. Ravaine, “Engineered Multilayer Colloidal Crystals with Tunable Optical Properties,” Chem. Mater.17, 4244–4249 (2005). [CrossRef]
  38. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House Inc., Norwood, MA, 2005).
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  40. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005). [CrossRef]
  41. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited