OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 578–593

Quantum dots (QDs) for photonic applications

Prem Prabhakaran, Won Jin Kim, Kwang-Sup Lee, and Paras N. Prasad  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 5, pp. 578-593 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum dots and their chemical adaptation for various photonic applications are presented in this review. The use of quantum dots as photoactive components in many applications requires their combination with other materials playing specific roles for separation and transport of charge carriers. Achieving good interfaces between electronically matched component materials is key to improved performance in photodetectors, photovoltaics, electroluminescence application, etc.

© 2012 OSA

OCIS Codes
(040.5150) Detectors : Photoconductivity
(040.5160) Detectors : Photodetectors
(040.5350) Detectors : Photovoltaic
(110.3960) Imaging systems : Microlithography
(160.5320) Materials : Photorefractive materials
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: February 21, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 5, 2012
Published: April 10, 2012

Virtual Issues
Quantum Dots for Photonic Applications (2012) Optical Materials Express
(2012) Advances in Optics and Photonics

Prem Prabhakaran, Won Jin Kim, Kwang-Sup Lee, and Paras N. Prasad, "Quantum dots (QDs) for photonic applications," Opt. Mater. Express 2, 578-593 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. N. Prasad, Nanophotonics, 1st ed. (John Wiley & Sons, New Jersey, 2004).
  2. A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem.44(20), 6893–6899 (2005). [CrossRef] [PubMed]
  3. A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007). [CrossRef]
  4. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010). [CrossRef] [PubMed]
  5. A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008). [CrossRef]
  6. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009). [CrossRef] [PubMed]
  7. S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir22(6), 2407–2410 (2006). [CrossRef] [PubMed]
  8. H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005). [CrossRef] [PubMed]
  9. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011). [CrossRef] [PubMed]
  10. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008). [CrossRef]
  11. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007). [CrossRef] [PubMed]
  12. L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007). [CrossRef]
  13. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004). [CrossRef]
  14. J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009). [CrossRef] [PubMed]
  15. M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater.15(21), 1844–1849 (2003). [CrossRef]
  16. J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009). [CrossRef] [PubMed]
  17. Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001). [CrossRef] [PubMed]
  18. L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Lett.1(6), 333–337 (2001). [CrossRef]
  19. W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008). [CrossRef] [PubMed]
  20. W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-step synthesis of quantum dots with chemical composition gradients,” Chem. Mater.20(2), 531–539 (2008). [CrossRef]
  21. J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010). [CrossRef] [PubMed]
  22. J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010). [CrossRef]
  23. J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009). [CrossRef]
  24. A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, “High-performance, solution-processed organic thin film transistors from a novel pentacene precursor,” J. Am. Chem. Soc.124(30), 8812–8813 (2002). [CrossRef] [PubMed]
  25. K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006). [CrossRef]
  26. S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell,” Appl. Phys. Lett.92(19), 191107 (2008). [CrossRef]
  27. N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007). [CrossRef]
  28. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002). [CrossRef] [PubMed]
  29. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002). [CrossRef] [PubMed]
  30. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005). [CrossRef] [PubMed]
  31. D. Qi, M. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett.86(9), 093103 (2005). [CrossRef]
  32. D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science310(5745), 86–89 (2005). [CrossRef] [PubMed]
  33. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005). [CrossRef] [PubMed]
  34. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002). [CrossRef] [PubMed]
  35. J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011). [CrossRef] [PubMed]
  36. J. Jasieniak, B. I. MacDonald, S. E. Watkins, and P. Mulvaney, “Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly,” Nano Lett.11(7), 2856–2864 (2011). [CrossRef] [PubMed]
  37. A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012). [CrossRef]
  38. J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999). [CrossRef]
  39. T. J. Bukowski and J. H. Simmons, “Quantum dot research: current state and future prospects,” Crit. Rev. Solid State Mater. Sci.27(3-4), 119–142 (2002). [CrossRef]
  40. R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007). [CrossRef]
  41. M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008). [CrossRef] [PubMed]
  42. C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008). [CrossRef]
  43. M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007). [CrossRef] [PubMed]
  44. J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007). [CrossRef] [PubMed]
  45. S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008). [CrossRef]
  46. M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys.100(7), 074510 (2006). [CrossRef]
  47. V. I. Klimov, “Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication,” Appl. Phys. Lett.89(12), 123118 (2006). [CrossRef]
  48. S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Self-passivating hybrid (organic/inorganic) tandem solar cell,” Sol. Energy Mater. Sol. Cells93(5), 657–661 (2009). [CrossRef]
  49. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications: Materials (Springer Verlag, 2007), Vol. 2.
  50. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited