OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 594–628

Perspective on synthesis, device structures, and printing processes for quantum dot displays

Jaehoon Lim, Wan Ki Bae, Jeonghun Kwak, Seonghoon Lee, Changhee Lee, and Kookheon Char  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 5, pp. 594-628 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5734 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum dot-based light emitting diodes have extensively been investigated over the past two decades in order to utilize high color purity and photophysical stability of quantum dots. In this review, progresses on the preparation of quantum dots, structural design of electroluminescence devices using quantum dots, and printing processes for full-color quantum dot display will be discussed. The obstacles originating from the use of heavy metals, large hole injection barrier, and imperfect printing processes for pixilation have limited the practical applications of quantum dot-based devices. It is expected that recent complementary approaches on materials, device structures, and new printing processes would accelerate the realization of quantum dot displays.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3670) Optical devices : Light-emitting diodes
(160.4236) Materials : Nanomaterials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: February 24, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: March 27, 2012
Published: April 11, 2012

Virtual Issues
Quantum Dots for Photonic Applications (2012) Optical Materials Express
(2012) Advances in Optics and Photonics

Jaehoon Lim, Wan Ki Bae, Jeonghun Kwak, Seonghoon Lee, Changhee Lee, and Kookheon Char, "Perspective on synthesis, device structures, and printing processes for quantum dot displays," Opt. Mater. Express 2, 594-628 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys.79(2), 1086–1088 (1983). [CrossRef]
  2. W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002). [CrossRef] [PubMed]
  3. X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002). [CrossRef]
  4. L. Qu, Z. A. Peng, and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano Lett.1(6), 333–337 (2001). [CrossRef]
  5. L. Qu, W. W. Yu, and X. Peng, “In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals,” Nano Lett.4(3), 465–469 (2004). [CrossRef]
  6. X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003). [CrossRef]
  7. B. K. H. Yen, N. E. Stott, K. F. Jensen, and M. G. Bawendi, “A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1858–1862 (2003). [CrossRef]
  8. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007). [CrossRef]
  9. Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001). [CrossRef] [PubMed]
  10. M. A. Hines and P. Guyot-Sionnest, “Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals,” J. Phys. Chem. B102(19), 3655–3657 (1998). [CrossRef]
  11. M. Shim and P. Guyot-Sionnest, “Organic-capped ZnO nanocrystals: synthesis and n-type character,” J. Am. Chem. Soc.123(47), 11651–11654 (2001). [CrossRef] [PubMed]
  12. D. Battaglia and X. Peng, “Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent,” Nano Lett.2(9), 1027–1030 (2002). [CrossRef]
  13. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994). [CrossRef]
  14. J. Xu, J.-P. Ge, and Y.-D. Li, “Solvothermal synthesis of monodisperse PbSe nanocrystals,” J. Phys. Chem. B110(6), 2497–2501 (2006). [CrossRef] [PubMed]
  15. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent,” Chem. Mater.16(17), 3318–3322 (2004). [CrossRef]
  16. K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008). [CrossRef]
  17. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006). [CrossRef] [PubMed]
  18. M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1844–1849 (2003). [CrossRef]
  19. S.-M. Lee, Y. W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc.124(38), 11244–11245 (2002). [CrossRef] [PubMed]
  20. W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008). [CrossRef] [PubMed]
  21. D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002). [CrossRef]
  22. J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001). [CrossRef] [PubMed]
  23. Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009). [CrossRef]
  24. J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Lett.4(7), 1181–1186 (2004). [CrossRef]
  25. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci.30(1), 545–610 (2000). [CrossRef]
  26. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010). [CrossRef] [PubMed]
  27. D. Vanmaekelbergh and P. Liljeroth, “Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals,” Chem. Soc. Rev.34(4), 299–312 (2005). [CrossRef] [PubMed]
  28. D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, “Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study,” J. Phys. Chem. B105(49), 12278–12285 (2001). [CrossRef]
  29. A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004). [CrossRef]
  30. H. Liu, J. S. Owen, and A. P. Alivisatos, “Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis,” J. Am. Chem. Soc.129(2), 305–312 (2007). [CrossRef] [PubMed]
  31. R. Xie, Z. Li, and X. Peng, “Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals,” J. Am. Chem. Soc.131(42), 15457–15466 (2009). [CrossRef] [PubMed]
  32. J. S. Owen, E. M. Chan, H. Liu, and A. P. Alivisatos, “Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals,” J. Am. Chem. Soc.132(51), 18206–18213 (2010). [CrossRef] [PubMed]
  33. D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, “Measurement of the size dependent hole spectrum in CdSe quantum dots,” Phys. Rev. Lett.72(16), 2612–2615 (1994). [CrossRef] [PubMed]
  34. P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res.44(1), 1–13 (2011). [CrossRef] [PubMed]
  35. A. L. Efros and M. Rosen, “The Electronic Structure Of Semiconductor Nanocrystals,” Annu. Rev. Mater. Sci.30(1), 475–521 (2000). [CrossRef]
  36. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996). [CrossRef] [PubMed]
  37. D. J. Norris and M. G. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16338–16346 (1996). [CrossRef] [PubMed]
  38. D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16347–16354 (1996). [CrossRef] [PubMed]
  39. V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B60(19), 13740–13749 (1999). [CrossRef]
  40. H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission,” Phys. Rev. B56(3), 1496–1508 (1997). [CrossRef]
  41. X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc.130(17), 5726–5735 (2008). [CrossRef] [PubMed]
  42. S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots,” J. Phys. Chem. B108(45), 17393–17397 (2004). [CrossRef]
  43. S.-H. Wei and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals,” Appl. Phys. Lett.72(16), 2011–2013 (1998). [CrossRef]
  44. D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science319(5871), 1776–1779 (2008). [CrossRef] [PubMed]
  45. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990). [CrossRef]
  46. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005). [CrossRef] [PubMed]
  47. Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996). [CrossRef]
  48. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997). [CrossRef]
  49. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003). [CrossRef] [PubMed]
  50. D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005). [CrossRef]
  51. P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small5(2), 154–168 (2009). [CrossRef] [PubMed]
  52. M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem.100(2), 468–471 (1996). [CrossRef]
  53. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997). [CrossRef]
  54. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001). [CrossRef]
  55. J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006). [CrossRef] [PubMed]
  56. D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004). [CrossRef]
  57. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124(9), 2049–2055 (2002). [CrossRef] [PubMed]
  58. M. D. Regulacio and M.-Y. Han, “Composition-tunable alloyed semiconductor nanocrystals,” Acc. Chem. Res.43(5), 621–630 (2010). [CrossRef] [PubMed]
  59. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev.105(4), 1025–1102 (2005). [CrossRef] [PubMed]
  60. X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003). [CrossRef] [PubMed]
  61. X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004). [CrossRef]
  62. X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007). [CrossRef]
  63. X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc.125(44), 13559–13563 (2003). [CrossRef] [PubMed]
  64. S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005). [CrossRef] [PubMed]
  65. Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005). [CrossRef]
  66. L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006). [CrossRef] [PubMed]
  67. M. Protière and P. Reiss, “Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range,” Small3(3), 399–403 (2007). [CrossRef] [PubMed]
  68. W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater.20(16), 5307–5313 (2008). [CrossRef]
  69. Z. Deng, H. Yan, and Y. Liu, “Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc.131(49), 17744–17745 (2009). [CrossRef] [PubMed]
  70. D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011). [CrossRef] [PubMed]
  71. T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller,” J. Phys. Chem. Lett.3(2), 214–218 (2012). [CrossRef]
  72. Y.-M. Sung, Y.-J. Lee, and K.-S. Park, “Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals,” J. Am. Chem. Soc.128(28), 9002–9003 (2006). [CrossRef] [PubMed]
  73. R. E. Bailey and S. Nie, “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size,” J. Am. Chem. Soc.125(23), 7100–7106 (2003). [CrossRef] [PubMed]
  74. R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005). [CrossRef] [PubMed]
  75. S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002). [CrossRef] [PubMed]
  76. W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” Chem. Mater.20(2), 531–539 (2008). [CrossRef]
  77. A. L. Washington and G. F. Strouse, “Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots,” Chem. Mater.21(15), 3586–3592 (2009). [CrossRef]
  78. N. P. Gurusinghe, N. N. Hewa-Kasakarage, and M. Zamkov, “Composition-Tunable Properties of CdSxTe1−x Alloy Nanocrystals,” J. Phys. Chem. C112(33), 12795–12800 (2008). [CrossRef]
  79. J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008). [CrossRef]
  80. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009). [CrossRef] [PubMed]
  81. L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc.130(35), 11588–11589 (2008). [CrossRef] [PubMed]
  82. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011). [CrossRef]
  83. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010). [CrossRef] [PubMed]
  84. S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012). [CrossRef] [PubMed]
  85. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chem. Mater.16(23), 4556–4573 (2004). [CrossRef]
  86. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994). [CrossRef]
  87. M. C. Schlamp, X. Peng, and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” J. Appl. Phys.82(11), 5837–5842 (1997). [CrossRef]
  88. H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998). [CrossRef]
  89. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002). [CrossRef] [PubMed]
  90. S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005). [CrossRef]
  91. J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006). [CrossRef] [PubMed]
  92. S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003). [CrossRef]
  93. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007). [CrossRef]
  94. J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006). [CrossRef] [PubMed]
  95. Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007). [CrossRef]
  96. W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009). [CrossRef]
  97. W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009). [CrossRef] [PubMed]
  98. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009). [CrossRef] [PubMed]
  99. P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008). [CrossRef]
  100. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000). [CrossRef] [PubMed]
  101. H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007). [CrossRef] [PubMed]
  102. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008). [CrossRef]
  103. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011). [CrossRef] [PubMed]
  104. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009). [CrossRef]
  105. V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009). [CrossRef] [PubMed]
  106. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5(9), 543–548 (2011). [CrossRef]
  107. J. W. Stouwdam and R. A. J. Janssen, “Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers,” J. Mater. Chem.18(16), 1889–1894 (2008). [CrossRef]
  108. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published). [PubMed]
  109. T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006). [CrossRef]
  110. J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009). [CrossRef]
  111. M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009). [CrossRef] [PubMed]
  112. W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010). [CrossRef] [PubMed]
  113. M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000). [CrossRef]
  114. C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007). [CrossRef]
  115. V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010). [CrossRef] [PubMed]
  116. V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011). [CrossRef] [PubMed]
  117. H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet Printed RGB Quantum Dot-Hybrid LED,” J. Disp. Technol.6(3), 87–89 (2010). [CrossRef]
  118. L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008). [CrossRef] [PubMed]
  119. A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett.63(14), 2002–2004 (1993). [CrossRef]
  120. S. Alom Ruiz and C. S. Chen, “Microcontact printing: A tool to pattern,” Soft Matter3(2), 168–177 (2007). [CrossRef]
  121. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011). [CrossRef]
  122. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007). [CrossRef] [PubMed]
  123. A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008). [CrossRef]
  124. A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008). [CrossRef] [PubMed]
  125. S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011). [CrossRef]
  126. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Adv. Mater. (Deerfield Beach Fla.)22(6), 673–685 (2010). [CrossRef] [PubMed]
  127. E. Tekin, P. J. Smith, and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter4(4), 703–713 (2008). [CrossRef]
  128. H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet printing of light emitting quantum dots,” Appl. Phys. Lett.94(7), 073108 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited