OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 657–662

Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals

Yuechen Jia, Ningning Dong, Feng Chen, Javier R. Vázquez de Aldana, Shavkat Akhmadaliev, and Shengqiang Zhou  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 5, pp. 657-662 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2842 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ridge waveguides have been fabricated in Nd:YAG single crystal by using femtosecond laser micromachining in an oxygen ion irradiated planar waveguide. The microphotoluminescence features have been found well preserved in the waveguide structures. Continuous wave lasers have been realized at 1.06 µm at room temperature in the ridge waveguide system with a lasing threshold of ~39 mW and a slope efficiency of 35%, which show superior performance to the planar waveguide.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(230.7370) Optical devices : Waveguides

ToC Category:
Laser Materials

Original Manuscript: March 23, 2012
Revised Manuscript: April 11, 2012
Manuscript Accepted: April 17, 2012
Published: April 18, 2012

Yuechen Jia, Ningning Dong, Feng Chen, Javier R. Vázquez de Aldana, Shavkat Akhmadaliev, and Shengqiang Zhou, "Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals," Opt. Mater. Express 2, 657-662 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  2. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3-4), 165–182 (2008). [CrossRef]
  3. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK, 1994).
  4. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. DOI: . [CrossRef]
  5. M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ= 1064.3 nm in proton- and carbon- implanted Nd:YAG waveguides,” Appl. Phys. Lett.83(20), 4110–4112 (2003). [CrossRef]
  6. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express12(10), 2264–2269 (2004). [CrossRef] [PubMed]
  7. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010). [CrossRef] [PubMed]
  8. Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express19(6), 5522–5527 (2011). [CrossRef] [PubMed]
  9. Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express18(24), 24516–24521 (2010). [CrossRef] [PubMed]
  10. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30(17), 2248–2250 (2005). [CrossRef] [PubMed]
  11. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  12. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  13. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010). [CrossRef]
  14. J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B257(1-2), 765–770 (2007). [CrossRef]
  15. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B249(1-2), 177–180 (2006). [CrossRef]
  16. P. Kumar, S. Moorthy Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys.102(8), 084905 (2007). [CrossRef]
  17. Y. Y. Ren, N. N. Dong, Y. C. Jia, L. L. Pang, Z. G. Wang, Q. M. Lu, and F. Chen, “Efficient laser emissions at 1.06 μm of swift heavy ion irradiated Nd:YCOB waveguides,” Opt. Lett.36(23), 4521–4523 (2011). [CrossRef] [PubMed]
  18. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009). [CrossRef]
  19. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009). [CrossRef]
  20. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  21. M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3(6), 535–544 (2009). [CrossRef]
  22. R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, and P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006). [CrossRef]
  23. Z. F. Bi, L. Wang, X. H. Liu, S. M. Zhang, M. M. Dong, Q. Z. Zhao, X. L. Wu, and K. M. Wang, “Optical waveguides in TiO2 formed by He ion implantation,” Opt. Express20(6), 6712–6719 (2012). [CrossRef] [PubMed]
  24. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  25. A. Ródenas, D. Jaque, C. Molpeceres, S. Lauzurica, J. L. Ocaña, G. A. Torchia, and F. Agulló-Rueda, “Ultraviolet nanosecond laser-assisted micro-modifications in lithium niobate monitored by Nd3+ luminescence,” Appl. Phys., A Mater. Sci. Process.87(1), 87–90 (2007). [CrossRef]
  26. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002). [CrossRef]
  27. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett.32(11), 1536–1538 (2007). [CrossRef] [PubMed]
  28. J. F. Ziegler, computer code, SRIM, http://www.srim.org .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited