OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 671–681

Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR

Brian A. Rose, Ashley J. Maker, and Andrea M. Armani  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 5, pp. 671-681 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1454 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Over the past several decades, silica sol-gel materials have attracted significant interest from the optics community because of their extremely versatile synthesis method. Because silica sol gels are fabricated using liquid precursors, dopants can be directly and uniformly incorporated into the silica matrix. Additionally, judicious selection of the dopant material and sol-gel catalyst allows the refractive index of the final silica film to be tuned over a wide range. Tuning the refractive index of silica materials enables the direct integration of silica devices on a silicon substrate, benefiting applications in telecommunications and integrated optics. While previous materials characterizations studies have focused primarily on the near-IR, given the rapidly emerging field of biophotonics, it is equally important to understand how these materials behave at visible wavelengths. In the present work, thin silica sol-gel films are formed from either tetraethyl orthosilicate (TEOS) or methyltriethoxysilane (MTES) with titanium butoxide (Ti(OBu)4). We characterized the basic material properties using Fourier Transform Infrared Spectroscopy (FTIR) and ellipsometry. In addition, by spin-coating the sol gel films onto optical resonant cavities, we determined the thermo-optic coefficient and the transmission loss of the material at both visible and near-IR wavelengths. The addition of titanium allows the films’ refractive index, material loss, and thermo-optic coefficient to be tuned, making these films useful for integrated optics and sensing applications.

© 2012 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.4760) Materials : Optical properties
(160.6060) Materials : Solgel

ToC Category:
Glass and Other Amorphous Materials

Original Manuscript: March 7, 2012
Revised Manuscript: April 16, 2012
Manuscript Accepted: April 17, 2012
Published: April 20, 2012

Brian A. Rose, Ashley J. Maker, and Andrea M. Armani, "Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR," Opt. Mater. Express 2, 671-681 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, “Sol-gel encapsulation methods for biosensors,” Anal. Chem.66(22), 1120A–1126A (1994). [CrossRef]
  2. J. Livage and C. Sanchez, “Sol-gel chemistry,” J. Non-Cryst. Solids145, 11–19 (1992). [CrossRef]
  3. R. L. Dumas, I. Tejedor-Tejedor, and M. A. Anderson, “Dependence of SiO2 gel structure on gelation conditions and sol reaction temperature as followed by FTIR and Nitrogen adsorption measurements,” J. Porous Mater.5(2), 95–101 (1998). [CrossRef]
  4. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011). [CrossRef]
  5. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009). [CrossRef] [PubMed]
  6. H. S. Choi, D. Neiroukh, H. K. Hunt, and A. M. Armani, “Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices,” Langmuir28(1), 849–854 (2012). [CrossRef] [PubMed]
  7. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21(7), 453–455 (1996). [CrossRef] [PubMed]
  8. L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem.66(8), 1254–1263 (1994). [CrossRef] [PubMed]
  9. H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010). [CrossRef] [PubMed]
  10. X. Zhang, H.-S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett.96(15), 153304 (2010). [CrossRef]
  11. M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater.32(9), 975–981 (2010). [CrossRef]
  12. H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010). [CrossRef]
  13. D. T. Larson, L. A. Lott, and D. L. Cash, “Surface film thickness determination by reflectance measurements,” Appl. Opt.12(6), 1271–1275 (1973). [CrossRef] [PubMed]
  14. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  15. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992). [CrossRef]
  16. H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett.36(11), 2152–2154 (2011). [CrossRef] [PubMed]
  17. M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys.96(2-3), 201–210 (2006). [CrossRef]
  18. P. J. Launer, “Infrared analysis of organosilicon compounds: spectra-structure correlations,” in Silicone Compounds Register and Review (1987), pp. 100–103.
  19. P. Innocenzi, “Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview,” J. Non-Cryst. Solids316(2-3), 309–319 (2003). [CrossRef]
  20. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, San Diego, 1998).
  21. E. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  22. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett.29(6), 626–628 (2004). [CrossRef] [PubMed]
  23. T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett.18(7), 859–861 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited