OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 685–690

Direct photofabrication of various surface structures in photosensitive and transparent hybrid materials using organically modified silica nanoparticles and oligosiloxanes

Dong Jun Kang, Go Un Park, Hyeon Hwa Lee, and Hoy Yul Park  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 5, pp. 685-690 (2012)
http://dx.doi.org/10.1364/OME.2.000685


View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hybrid materials composed of organically modified silica nanoparticles and oligosiloxanes exhibited homogeneous dispersion without any phase separation or aggregation and good solution processability. These hybrid materials exhibited good solubility of photoinitiator and high transmittance of above 90% in visible wavelength ranges. In particular, the materials showed high photocurability, with degrees of conversion under UV exposure above 90%. With high photosensitivity, the hybrid materials were used for direct photopatterning without the developing process used in the photomask method. The various optical surface structures on a micrometer scale were easily fabricated in the hybrid films upon UV exposure, and the samples exhibited good root-mean-square (RMS) roughness of around 1 nm.

© 2012 OSA

OCIS Codes
(160.6030) Materials : Silica
(160.6060) Materials : Solgel
(220.4610) Optical design and fabrication : Optical fabrication
(160.5335) Materials : Photosensitive materials

ToC Category:
Laser Materials Processing

History
Original Manuscript: March 30, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 19, 2012
Published: April 24, 2012

Citation
Dong Jun Kang, Go Un Park, Hyeon Hwa Lee, and Hoy Yul Park, "Direct photofabrication of various surface structures in photosensitive and transparent hybrid materials using organically modified silica nanoparticles and oligosiloxanes," Opt. Mater. Express 2, 685-690 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-5-685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Zettsu, T. Ubukata, T. Seki, and K. Ichimura, “Soft crosslinkable azo polymer for rapid surface relief formation and persistent fixation,” Adv. Mater. 13(22), 1693–1697 (2001). [CrossRef]
  2. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999). [CrossRef]
  3. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and application,” Adv. Mater. 10(15), 1219–1224 (1998). [CrossRef]
  4. V. Weiss, A. A. Friesem, and V. A. Krongauz, “Holographic recording and all-optical modulation in photochromic polymers,” Opt. Lett. 18(13), 1089–1091 (1993). [CrossRef] [PubMed]
  5. D. J. Kang, W. S. Kim, B. S. Bae, H. K. Park, and B. H. Jung, “Direct photofabrication of refractive-index-modulated multimode optical waveguide using photosensitive sol-gel hybrid materials,” Appl. Phys. Lett. 87(22), 221106 (2005). [CrossRef]
  6. W. Yu and X.-C. Yuan, “Variable surface profile gratings in sol-gel glass fabricated by holographic interference,” Opt. Express 11(16), 1925–1930 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-16-1925 . [CrossRef] [PubMed]
  7. B. S. Bae, O. H. Park, R. Charters, B. Luther-Davies, and G. R. Atkins, “Direct laser writing of self-developed waveguides in benzyl dimethyl ketal doped sol-gel hybrid glass,” J. Mater. Res. 16(11), 3184–3187 (2001). [CrossRef]
  8. P. Äyräs, J. T. Rantala, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162(4-6), 215–218 (1999). [CrossRef]
  9. R. Sramek, R. Smektala, W. X. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids 277(1), 39–44 (2000). [CrossRef]
  10. A. Akella, T. Honda, A. Y. Liu, and L. Hesselink, “Two-photon holographic recording in aluminosilicate glass containing silver particles,” Opt. Lett. 22(13), 967–969 (1997). [CrossRef] [PubMed]
  11. D. J. Kang, D. H. Han, D. P. Kang, J. W. Yoo, and B. U. Kim, “Fabrication of surface-structure controlled photopatterns upon transparent silica-acryl nanohybrid films with enhanced thermal and mechanical properties,” Opt. Express 16(22), 18320–18325 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-18320 . [CrossRef] [PubMed]
  12. D. J. Kang and B. S. Bae, “Photo-imageable sol-gel hybrid materials for simple fabrication of micro-optical elements,” Acc. Chem. Res. 40(9), 903–912 (2007). [CrossRef] [PubMed]
  13. D. J. Kang, J. P. Jeong, and B. S. Bae, “Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive sol-gel hybrid materials,” Opt. Express 14(18), 8347–8353 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8347 . [CrossRef] [PubMed]
  14. A. H. O. Kärkkäinen, J. T. Rantala, J. M. Tamkin, and M. R. Descour, “Photolithographic processing of hybrid glasses for microoptics,” J. Lightwave Technol. 21(3), 614–623 (2003). [CrossRef]
  15. W. S. Kim, R. Houbertz, T. H. Lee, and B. S. Bae, “Effect of photoinitiator on photopolymerization of inorganic-organic hybrid polymers (ORMOCER),” J. Polym. Sci. B 42(10), 1979–1986 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited