OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 691–699

Photo-acoustic sub-micrometer modifications of glass by pair of femtosecond laser pulses

Yoshio Hayasaki, Mitsuhiro Isaka, Akihiro Takita, Satoshi Hasegawa, and Saulius Juodkazis  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 5, pp. 691-699 (2012)
http://dx.doi.org/10.1364/OME.2.000691


View Full Text Article

Enhanced HTML    Acrobat PDF (2004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present time-resolved studies of glass densification created by an acoustic phenomenon: collision of the transverse and longitudinal sound waves inside glass. Localization of the permanent denisfied region has a lateral cross section ∼ 0.4 μm and is approximately half of the wavelength of femtosecond laser pulses which were used to generate breakdown and launched shock waves inside glass. Controlled time delay between two closely spaced irradiation spots reveals dynamics and relaxation (electronic, thermal, stress) of glass after excitation. The observed phenomenon is important for femtosecond direct laser writing and recording of waveguide couplers using multiple beams.

© 2012 OSA

ToC Category:
Laser Materials Processing

History
Original Manuscript: March 29, 2012
Revised Manuscript: April 11, 2012
Manuscript Accepted: April 17, 2012
Published: April 27, 2012

Citation
Yoshio Hayasaki, Mitsuhiro Isaka, Akihiro Takita, Satoshi Hasegawa, and Saulius Juodkazis, "Photo-acoustic sub-micrometer modifications of glass by pair of femtosecond laser pulses," Opt. Mater. Express 2, 691-699 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-5-691


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010). [CrossRef] [PubMed]
  2. H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978). [CrossRef]
  3. C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett.104, 154301 (2010). [CrossRef] [PubMed]
  4. J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011). [CrossRef] [PubMed]
  5. S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011). [CrossRef]
  6. E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004). [CrossRef]
  7. A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011). [CrossRef]
  8. E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012). [CrossRef]
  9. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011). [CrossRef] [PubMed]
  10. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996). [CrossRef]
  11. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003). [CrossRef] [PubMed]
  12. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009). [CrossRef]
  13. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13, 1999–2006 (2005). [CrossRef] [PubMed]
  14. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18, 16035–16041 (2010). [CrossRef] [PubMed]
  15. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003). [CrossRef]
  16. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002). [CrossRef]
  17. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003). [CrossRef] [PubMed]
  18. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express1, 998–1008 (2011). [CrossRef]
  19. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009). [CrossRef] [PubMed]
  20. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19, 6807–6821 (2011). [CrossRef] [PubMed]
  21. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006). [CrossRef]
  22. M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19, 17780–17789 (2011). [CrossRef] [PubMed]
  23. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011). [CrossRef]
  24. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006). [CrossRef]
  25. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003). [CrossRef]
  26. V. V. Temnov, K. S. Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B23, 1954–1964 (2006). [CrossRef]
  27. P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B49, 7299–7305 (1994). [CrossRef]
  28. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011). [CrossRef] [PubMed]
  29. Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express1, 1399–1408 (2011). [CrossRef]
  30. F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001). [CrossRef]
  31. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011). [CrossRef]
  32. D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express1, 625–632 (2011). [CrossRef]
  33. D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett.93, 041120 (2008). [CrossRef]
  34. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003). [CrossRef]
  35. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006). [CrossRef]
  36. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New. J. Phys.9, 253 (2007). [CrossRef]
  37. C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994). [CrossRef]
  38. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010). [CrossRef]
  39. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011). [CrossRef]
  40. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999). [CrossRef]
  41. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010). [CrossRef] [PubMed]
  42. E. Brasselet and S. Juodkazis, “Intangible pointlike tracers for liquid-crystal-based microsensors,” Phys. Rev. A82, 063832 (2010). [CrossRef]
  43. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009). [CrossRef]
  44. S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys. A80, 683–685 (2004). [CrossRef]
  45. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited