OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 700–707

Deterministic control of structural and optical properties of plasma-grown vertical graphene nanosheet networks via nitrogen gas variation

Dong Han Seo, Shailesh Kumar, Amanda Evelyn Rider, Zhaojun Han, and Kostya (Ken) Ostrikov  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 6, pp. 700-707 (2012)
http://dx.doi.org/10.1364/OME.2.000700


View Full Text Article

Enhanced HTML    Acrobat PDF (2789 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of nitrogen on the growth of vertically oriented graphene nanosheets on catalyst-free silicon and glass substrates in a plasma-assisted process is studied. Different concentrations of nitrogen were found to act as versatile control knobs that could be used to tailor the length, number density and structural properties of the nanosheets. Nanosheets with different structural characteristics exhibit markedly different optical properties. The nanosheet samples were treated with a bovine serum albumin protein solution to investigate the effects of this variation on the optical properties for biosensing through confocal micro-Raman spectroscopy and UV-Vis spectrophotometry.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(310.1860) Thin films : Deposition and fabrication
(160.4236) Materials : Nanomaterials

ToC Category:
Nanomaterials

History
Original Manuscript: March 15, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 24, 2012
Published: April 30, 2012

Virtual Issues
Nanocarbon for Photonics and Optoelectronics (2012) Optical Materials Express

Citation
Dong Han Seo, Shailesh Kumar, Amanda Evelyn Rider, Zhaojun Han, and Kostya (Ken) Ostrikov, "Deterministic control of structural and optical properties of plasma-grown vertical graphene nanosheet networks via nitrogen gas variation," Opt. Mater. Express 2, 700-707 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-6-700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  2. M. S. Fuhrer, “Graphene: Ribbons piece-by-piece,” Nat. Mater.9(8), 611–612 (2010). [CrossRef] [PubMed]
  3. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010). [CrossRef] [PubMed]
  4. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012). [CrossRef] [PubMed]
  5. J. R. Miller, R. A. Outlaw, and B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performance,” Science329(5999), 1637–1639 (2010). [CrossRef] [PubMed]
  6. N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, “Platinum integrated graphene for methanol fuel cells,” J. Phys. Chem. C114(37), 15837–15841 (2010). [CrossRef]
  7. A. E. Rider, S. Kumar, S. A. Furman, and K. K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform,” Chem. Commun. (Camb.)48(21), 2659–2661 (2012). [CrossRef] [PubMed]
  8. D. H. Seo, S. Kumar, and K. Ostrikov, “Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic,” J. Mater. Chem.21(41), 16339–16343 (2011). [CrossRef]
  9. N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010). [CrossRef] [PubMed]
  10. I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010). [CrossRef]
  11. K. Ostrikov, “Colloquium: Reactive plasmas as a versatile nanofabrication tool,” Rev. Mod. Phys.77(2), 489–511 (2005). [CrossRef]
  12. D. H. Seo, S. Kumar, and K. Ostrikov, “Control of morphology and electrical properties of self-organized graphenes in a plasma,” Carbon49(13), 4331–4339 (2011). [CrossRef]
  13. S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, “Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon,” Appl. Phys. Lett.97(15), 151503 (2010). [CrossRef]
  14. S. Kumar, P. K. Yadav, J. Hamilton, and J. McLaughlin, “Arrays of carbon nanoflake spherules realised on copper substrate,” Diamond Related Materials18(9), 1070–1073 (2009). [CrossRef]
  15. S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005). [CrossRef]
  16. H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “Etching organic low dielectric film in ultra high frequency plasma using N2/H2 and N2/NH3 gases,” J. Appl. Phys.94(3), 1362–1367 (2003). [CrossRef]
  17. R. C. Keller, M. Seelmann-Eggebert, and H. J. Richter, “Addition of N2 as a polymer deposition inhibitor in CH4/H2 electrocyclotron resonance plasma etching of Hg1-xCdxTe,” Appl. Phys. Lett.67(25), 3750–3752 (1995). [CrossRef]
  18. V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited