OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 708–716

Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition [Invited]

Brian A. Ruzicka, Shuai Wang, Jianwei Liu, Kian-Ping Loh, Judy Z. Wu, and Hui Zhao  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 6, pp. 708-716 (2012)
http://dx.doi.org/10.1364/OME.2.000708


View Full Text Article

Enhanced HTML    Acrobat PDF (2105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Carrier dynamics in single-layer graphene grown by chemical vapor deposition (CVD) is studied using spatially and temporally resolved pump-probe spectroscopy by measuring both differential transmission and differential reflection. By studying the expansion of a Gaussian spatial profile of carriers excited by a 1500-nm pump pulse with a 1761-nm probe pulse, we observe a diffusion of hot carriers of 5500 cm2/s. We also observe that the expansion of the carrier density profile decreases to a slow rate within 1 ps, which is unexpected. Furthermore, by using an 810-nm probe pulse we observe that both the differential transmission and reflection change signs, but also that this sign change can be permanently removed by exposure of the graphene to femtosecond laser pulses of relatively high fluence. This indicates that the differential transmission and reflection at later times may not be directly caused by carriers, but may be from some residue material from the sample fabrication or transfer process.

© 2012 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Nanomaterials

History
Original Manuscript: March 12, 2012
Revised Manuscript: April 21, 2012
Manuscript Accepted: April 24, 2012
Published: April 30, 2012

Virtual Issues
Nanocarbon for Photonics and Optoelectronics (2012) Optical Materials Express

Citation
Brian A. Ruzicka, Shuai Wang, Jianwei Liu, Kian-Ping Loh, Judy Z. Wu, and Hui Zhao, "Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition [Invited]," Opt. Mater. Express 2, 708-716 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-6-708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  2. Y. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472, 74–78 (2011). [CrossRef] [PubMed]
  3. R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express17, 2326–2333 (2009). [CrossRef] [PubMed]
  4. K. F. Mak, C. H. Lui, and T. F. Heinz, “Measurement of the thermal conductance of the graphene/sio[sub 2] interface,” Appl. Phys. Lett.97, 221904 (2010). [CrossRef]
  5. M. Breusing, S. Kuehn, T. Winzer, E. Malicacute, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “Ultrafast nonequilibrium carrier dynamics in a single graphene layer,” Phys. Rev. B83, 153410 (2011). [CrossRef]
  6. P. J. Hale, S. M. Hornett, J. Moger, D. W. Horsell, and E. Hendry, “Hot phonon decay in supported and suspended exfoliated graphene,” Phys. Rev. B83, 121404 (2011). [CrossRef]
  7. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett.92, 042116 (2008). [CrossRef]
  8. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett.8, 4248–4251 (2008). [CrossRef]
  9. D. Sun, Z. K. Wu, C. Divin, X. B. Li, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008). [CrossRef] [PubMed]
  10. H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett.94, 172102 (2009). [CrossRef]
  11. P. Plochocka, P. Kossacki, A. Golnik, T. Kazimierczuk, C. Berger, W. A. de Heer, and M. Potemski, “Slowing hot-carrier relaxation in graphene using a magnetic field,” Phys. Rev. B80, 245415 (2009). [CrossRef]
  12. L. Huang, G. V. Hartland, L. Q. Chu, Luxmi, R. M. Feenstra, C. Lian, K. Tahy, and H. Xing, “Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene,” Nano Lett.10, 1308–1313 (2010). [CrossRef] [PubMed]
  13. D. Sun, C. Divin, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene,” Phys. Rev. Lett.104, 136802 (2010). [CrossRef] [PubMed]
  14. H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett.96, 081917 (2010). [CrossRef]
  15. B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B82, 195414 (2010). [CrossRef]
  16. U. Kurum, O. O. Ekiz, H. G. Yaglioglul, A. Elmali, M. Urel, H. Guner, A. K. Zrak, B. Ortac, and A. Dana, “Electrochemically tunable ultrafast optical response of graphene oxide,” Appl. Phys. Lett.98, 141103 (2011). [CrossRef]
  17. X. Zhao, Z. B. Liu, W. B. Yan, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett.98, 121905 (2011). [CrossRef]
  18. S. Kaniyankandy, S. N. Achary, S. Rawalekar, and H. N. Ghosh, “Ultrafast relaxation dynamics in graphene oxide: Evidence of electron trapping,” J. Phys. Chem. C115, 19110–19116 (2011). [CrossRef]
  19. Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp(2)- and sp(3)-hybridized domains in graphene oxide,” J. Phys. Chem. Lett.2, 1972–1977 (2011). [CrossRef]
  20. S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett.95, 191911 (2009). [CrossRef]
  21. B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett.96, 173106 (2010). [CrossRef]
  22. B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys.109, 084322 (2011). [CrossRef]
  23. J. Z. Shang, Z. Q. Luo, C. X. Cong, J. Y. Lin, T. Yu, and G. G. Gurzadyan, “Femtosecond uv-pump/visible-probe measurements of carrier dynamics in stacked graphene films,” Appl. Phys. Lett.97, 163103 (2010). [CrossRef]
  24. B. Gao, G. Hartland, T. Fang, M. Kelly, D. Jena, H. Xing, and L. Huang, “Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy,” Nano Lett.11, 3184–3189 (2011). [CrossRef] [PubMed]
  25. K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49, 4781–4785 (2011). [CrossRef]
  26. J. Z. Shang, T. Yu, J. Y. Lin, and G. G. Gurzadyan, “Ultrafast electron-optical phonon scattering and quasiparticle lifetime in cvd-grown graphene,” ACS Nano5, 3278–3283 (2011). [CrossRef] [PubMed]
  27. P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obtraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett.11, 1540–1545 (2011). [CrossRef] [PubMed]
  28. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene for the mode locking of fiber lasers,” Adv. Funct. Mater.19, 3077–3083 (2009). [CrossRef]
  29. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324, 1312–1314 (2009). [CrossRef] [PubMed]
  30. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett.95, 063302 (2009). [CrossRef]
  31. H. Zhao, “Temperature dependence of ambipolar diffusion in silicon-on-insulator,” Appl. Phys. Lett.92, 112104 (2008). [CrossRef]
  32. B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett.97, 262119 (2010). [CrossRef]
  33. H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B79, 115321 (2009). [CrossRef]
  34. H. Cao, Q. Yu, R. Colby, D. Pandey, C. S. Park, J. Lian, D. Zemlyanov, I. Childres, V. Drachev, E. A. Stach, M. Hussain, H. Li, S. S. Pei, and Y. P. Chen, “Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties,” J. Appl. Phys.107, 044310 (2010). [CrossRef]
  35. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009). [CrossRef] [PubMed]
  36. X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, “Graphene films with large domain size by a two-step chemical vapor deposition process,” Nano Lett.10, 4328–4334 (2010). [CrossRef] [PubMed]
  37. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006). [CrossRef] [PubMed]
  38. X. Q. Zou, D. Zhan, X. F. Fan, D. Lee, S. K. Nair, L. Sun, Z. H. Ni, Z. Q. Luo, L. Liu, T. Yu, Z. X. Shen, and E. E. M. Chia, “Ultrafast carrier dynamics in pristine and FeCl3-intercalated bilayer graphene,” Appl. Phys. Lett.97, 141910 (2010). [CrossRef]
  39. A. Roberts, D. Cormode, C. Reynolds, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett.99, 051912 (2011). [CrossRef]
  40. M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett.99, 211909 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited