OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 740–748

Blue-green luminescent silicon nanocrystals fabricated by nanosecond pulsed laser ablation in dimethyl sulfoxide

N. Mansour, A. Momeni, R. Karimzadeh, and M. Amini  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 6, pp. 740-748 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1949 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, stable blue-green luminescent colloidal silicon nanocrystals (SiNCs) are fabricated by nanosecond pulsed laser ablation of a silicon target in dimethyl sulfoxide (DMSO). Transmission electron microscopy and X-ray diffraction analysis have shown the formation of spherical silicon nanocrystals in the colloid with size range of 2-5 nm. Our results show that the DMSO stabilizes the silicon nanocrystals via oxide formations on the nanocrytals surfaces by a simple route of laser ablation and a schematic representation of the process is suggested. The colloid exhibits strong blue luminescent emissions in the spectral range of 455-465 nm when excited at wavelengths near the direct band gap of the silicon nanocrystal. The luminescent emission band shifts to longer wavelengths (green light) if the excitation wavelength increases toward the indirect band gap of the SiNCs. The oxidized SiNCs with quantum confinement effects are shown to be responsible for visible photoluminescence of the colloid. The observed blue-green emission of the colloid makes it a good candidate for display, solid-state lighting and biological luminescent based devices.

© 2012 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(140.3390) Lasers and laser optics : Laser materials processing
(160.2540) Materials : Fluorescent and luminescent materials
(160.4236) Materials : Nanomaterials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: April 16, 2012
Revised Manuscript: April 28, 2012
Manuscript Accepted: April 30, 2012
Published: May 2, 2012

N. Mansour, A. Momeni, R. Karimzadeh, and M. Amini, "Blue-green luminescent silicon nanocrystals fabricated by nanosecond pulsed laser ablation in dimethyl sulfoxide," Opt. Mater. Express 2, 740-748 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000). [CrossRef] [PubMed]
  2. K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011). [CrossRef] [PubMed]
  3. D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011). [CrossRef] [PubMed]
  4. F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008). [CrossRef] [PubMed]
  5. V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011). [CrossRef]
  6. N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009). [CrossRef] [PubMed]
  7. R. Karimzadeh, J. Z. Anvari, and N. Mansour, “Nanosecond pulsed laser ablation of silicon in liquids,” Appl. Phys., A Mater. Sci. Process.94(4), 949–955 (2009). [CrossRef]
  8. K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011). [CrossRef]
  9. V. Švrček, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett.89(21), 213113 (2006). [CrossRef]
  10. D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011). [CrossRef] [PubMed]
  11. L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000). [CrossRef]
  12. Z. F. Li and E. Ruckenstein, “Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett.4(8), 1463–1467 (2004). [CrossRef]
  13. M. J. Sailor and E. J. Lee, “Surface chemistry of luminescent silicon nanocrystallites,” Adv. Mater.9(10), 783–793 (1997). [CrossRef]
  14. M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011). [CrossRef] [PubMed]
  15. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-mettallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011). [CrossRef]
  16. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009). [CrossRef]
  17. E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011). [CrossRef]
  18. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011). [CrossRef]
  19. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012). [CrossRef]
  20. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  21. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011). [CrossRef]
  22. C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011). [CrossRef]
  23. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011). [CrossRef]
  24. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, 2001).
  25. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999). [CrossRef]
  26. S. Pradhan, S. Chen, J. Zou, and S. M. Kauzlarich, “Photoconductivity of Langmuir-blodgett monolayers of silicon nanoparticles,” J. Phys. Chem. C112(34), 13292–13298 (2008). [CrossRef]
  27. X. Chen, B. Minofar, P. Jungwirth, and H. C. Allen, “Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic Acid using sum frequency spectroscopy and molecular dynamics simulation,” J. Phys. Chem. B114(47), 15546–15553 (2010). [CrossRef] [PubMed]
  28. J. T. Cabral, A. Luzar, J. Teixeira, and M. C. Bellissent-Funel, “Water dynamics in DMSO-water mixture,” Physica B276–278, 508–509 (2000). [CrossRef]
  29. P. Huang, A. Dong, and W. S. Caughey, “Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy,” J. Pharm. Sci.84(4), 387–392 (1995). [CrossRef] [PubMed]
  30. S. W. Lin and D. H. Chen, “Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation,” Small5(1), 72–76 (2009). [CrossRef] [PubMed]
  31. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999). [CrossRef]
  32. X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003). [CrossRef]
  33. X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir19(20), 8490–8496 (2003). [CrossRef]
  34. S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011). [CrossRef]
  35. J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001). [CrossRef] [PubMed]
  36. P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters,” J. Appl. Phys.83(7), 3789–3794 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited