OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 789–798

Direct volume variation measurements in fused silica specimens exposed to femtosecond laser

Audrey Champion and Yves Bellouard  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 6, pp. 789-798 (2012)
http://dx.doi.org/10.1364/OME.2.000789


View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new method to investigate localized volume variations resulting from laser exposure. Our method is based on the measurement of fused silica cantilevers deflection from which we calculate the effective stress and density variation in laser-affected zones. Specifically, we investigate density variations in fused silica exposed to femtosecond laser exposure in the regime where nanogratings are found. We demonstrate that a volume expansion is taking place in that particular regime.

© 2012 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(230.4000) Optical devices : Microstructure fabrication
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: March 21, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: May 3, 2012
Published: May 14, 2012

Citation
Audrey Champion and Yves Bellouard, "Direct volume variation measurements in fused silica specimens exposed to femtosecond laser," Opt. Mater. Express 2, 789-798 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-6-789


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001). [CrossRef] [PubMed]
  3. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express16(24), 19520–19534 (2008), doi:. [CrossRef] [PubMed]
  4. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express14(18), 8360–8366 (2006), doi:. [CrossRef] [PubMed]
  5. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  6. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  7. P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” Opt. Phys.40(11), S273–S282 (2007). [CrossRef]
  8. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004). [CrossRef] [PubMed]
  9. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011). [CrossRef]
  10. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005). [CrossRef] [PubMed]
  11. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997). [CrossRef]
  12. C. Hnatovsky, J. R. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005). [CrossRef]
  13. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self‐organized planar nanocracks inside fused silica glass,” Laser Photonics Rev.2(1-2), 26–46 (2008). [CrossRef]
  14. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express1(5), 998–1008 (2011), doi:. [CrossRef]
  15. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express18(20), 21490–21497 (2010), doi:. [CrossRef] [PubMed]
  16. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character82(553), 172–175 (1909). [CrossRef]
  17. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 . [CrossRef] [PubMed]
  18. H. Sugiura and T. Yamadaya, “Raman-scattering in silica glass in the permanent densification region,” J. Non-Cryst. Solids144, 151–158 (1992). [CrossRef]
  19. J. Bell and P. Dean, “Atomic vibrations in vitreous silica,” Discuss. Faraday Soc.50, 55–61 (1970). [CrossRef]
  20. F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B19(8), 4292–4297 (1979). [CrossRef]
  21. M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopy study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999). [CrossRef]
  22. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001). [CrossRef] [PubMed]
  23. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006). [CrossRef]
  24. A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids209(1-2), 166–174 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited