OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 799–813

Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids

Turkka Salminen, Johnny Dahl, Marjukka Tuominen, Pekka Laukkanen, Eero Arola, and Tapio Niemi  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 6, pp. 799-813 (2012)
http://dx.doi.org/10.1364/OME.2.000799


View Full Text Article

Enhanced HTML    Acrobat PDF (1911 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical absorption and emission properties of gallium arsenide nanocrystals can be tuned across the visible spectrum by tuning their size. The surface of pure GaAs nanocrystals tends to oxidize, which deteriorates their optical properties. In order to prevent the oxidization, surface passivation has been previously demonstrated for GaAs nanocrystals larger than the Bohr exciton radius. In this paper, we study synthesis of small GaAs nanocrystals by pulsed laser ablation in liquids combined with simultaneous chemical surface passivation. The fabricated nanocrystals are smaller than the Bohr exciton radius and exhibit photoluminescence peaked near 530 nm due to quantum confinement. The photoluminescence properties are stable for at least six months, which is attributed to successful surface passivation. The chemical structure of the nanocrystals and changes caused by thermal annealing are elucidated with Raman spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy.

© 2012 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(250.5230) Optoelectronics : Photoluminescence
(350.3850) Other areas of optics : Materials processing
(160.4236) Materials : Nanomaterials

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: March 26, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: May 10, 2012
Published: May 14, 2012

Citation
Turkka Salminen, Johnny Dahl, Marjukka Tuominen, Pekka Laukkanen, Eero Arola, and Tapio Niemi, "Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids," Opt. Mater. Express 2, 799-813 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-6-799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. E. Brus, “Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys.80(9), 4403–4409 (1984). [CrossRef]
  2. M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, “Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement,” J. Am. Chem. Soc.112(25), 9438–9439 (1990). [CrossRef]
  3. H. Uchida, C. J. Curtis, and A. J. Nozik, “Gallium arsenide nanocrystals prepared in quinoline,” J. Phys. Chem.95(14), 5382–5384 (1991). [CrossRef]
  4. S. S. Kher and R. L. Wells, “A straightforward, new method for the synthesis of nanocrystalline GaAs and GaP,” Chem. Mater.6(11), 2056–2062 (1994). [CrossRef]
  5. M. A. Malik, P. O’Brien, S. Norager, and J. Smith, “Gallium arsenide nanoparticles: synthesis and characterisation,” J. Mater. Chem.13(10), 2591–2595 (2003). [CrossRef]
  6. M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004). [CrossRef]
  7. U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992). [CrossRef]
  8. J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001). [CrossRef]
  9. A. A. Lalayan, “Formation of colloidal GaAs and CdS quantum dots by laser ablation in liquid media,” Appl. Surf. Sci.248(1-4), 209–212 (2005). [CrossRef]
  10. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005). [CrossRef]
  11. M. C. Traub, J. S. Biteen, B. S. Brunschwig, and N. S. Lewis, “Passivation of GaAs nanocrystals by chemical functionalization,” J. Am. Chem. Soc.130(3), 955–964 (2008). [CrossRef] [PubMed]
  12. Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys.27(Part 2, No. 12), L2367–L2369 (1988). [CrossRef]
  13. T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010). [CrossRef]
  14. A. K. Arora, M. Rajalakshmi, and T. R. Ravindran, “Phonon confinement in nanostructured materials,” in Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa, ed. (American Scientific Publishers, Los Angeles, 2004), Vol. 8, pp.409–512.
  15. G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987). [CrossRef]
  16. I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994). [CrossRef]
  17. G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979). [CrossRef]
  18. Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003). [CrossRef]
  19. I. H. Campbell and P. M. Fauchet, “CW laser irradiation of GaAs: Arsenic formation and photoluminescence degradation,” Appl. Phys. Lett.57(1), 10–12 (1990). [CrossRef]
  20. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981). [CrossRef]
  21. A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” J. Raman Spectrosc.38(6), 604–617 (2007). [CrossRef]
  22. D. Strauch and B. Dorner, “Phonon dispersion in GaAs,” J. Phys. Condens. Matter2(6), 1457–1474 (1990). [CrossRef]
  23. R. K. Chang, J. M. Ralston, and D. E. Keating, in Light Scattering Spectra of Solids, G. B. Wright, ed. (Springer–Verlag, New York, 1969), p. 369.
  24. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun.58(10), 739–741 (1986). [CrossRef]
  25. J. Zi, K. Zhang, and X. Xie, “Comparison of models for Raman spectra of Si nanocrystals,” Phys. Rev. B55(15), 9263–9266 (1997). [CrossRef]
  26. E. A. Rochette, B. C. Bostick, G. Li, and S. Fendorf, “Kinetics of arsenate reduction by dissolved sulfide,” Environ. Sci. Technol.34(22), 4714–4720 (2000). [CrossRef]
  27. G. Scamarcio, A. Cingolani, M. Lugarà, and F. Lévy, “Resonant Raman effects at the indirect band gaps of GaS,” Phys. Rev. B Condens. Matter40(3), 1783–1789 (1989). [CrossRef] [PubMed]
  28. G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci.52(4), 648–698 (2007). [CrossRef]
  29. T. Fanaei and C. Aktik, “Passivation of GaAs using P2S5/(NH4)2S+Se and (NH4)2S+Se,” J. Vac. Sci. Technol. A22, 874–878 (2004).
  30. D. Peide, “Main determinants for III–V metal-oxide-semiconductor field-effect transistors,” J. Vac. Sci. Technol. A26, 697–704 (2007).
  31. J. G. Díaz and G. W. Bryant, “Electronic and optical fine structure of GaAs nanocrystals: The role of d orbitals in a tight-binding approach,” Phys. Rev. B73(7), 075329 (2006). [CrossRef]
  32. J. J. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B57(11), 6493–6507 (1998). [CrossRef]
  33. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys.53(10), R123–R181 (1982). [CrossRef]
  34. G. E. Fenner, “Effect of hydrostatic pressure on the emission from gallium arsenide lasers,” J. Appl. Phys.34(10), 2955–2957 (1963). [CrossRef]
  35. U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, “Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers,” Phys. Rev. B Condens. Matter45(16), 9237–9247 (1992). [CrossRef] [PubMed]
  36. C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009). [CrossRef]
  37. V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010). [CrossRef]
  38. J. Dahl, V. Polojärvi, J. Salmi, P. Laukkanen, and M. Guina, “Properties of the SiO2- and SiNx-capped GaAs(100) surfaces of GaInAsN/GaAs quantum-well heterostructures studied by photoelectron spectroscopy and photoluminescence,” Appl. Phys. Lett.99(10), 102105 (2011). [CrossRef]
  39. D. J. Lockwood, P. Schmuki, H. J. Labbé, and J. W. Fraser, “Optical properties of porous GaAs,” Physica E4(2), 102–110 (1999). [CrossRef]
  40. N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007). [CrossRef]
  41. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998). [CrossRef] [PubMed]
  42. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007). [CrossRef]
  43. Q. Li, C. Liu, Z. Liu, and Q. Gong, “Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express13(6), 1833–1838 (2005). [CrossRef] [PubMed]
  44. C. Wetzel and T. Detchprohm, “Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency,” Opt. Express19(S4Suppl 4), A962–A971 (2011). [CrossRef] [PubMed]
  45. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012). [CrossRef]
  46. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  47. J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004). [CrossRef] [PubMed]
  48. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited