OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 856–863

TPD doped polystyrene as charge transporter in DiPBI sensitized photorefractive composites

Thomas Schemme, Evgenij Travkin, Katharina Ditte, Wei Jiang, Zhaohui Wang, and Cornelia Denz  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 6, pp. 856-863 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We incorporate a mixture of polystyrene (PS) and the highly conductive N, N′-diphenyl-N, N′-bis(3-methylphenyl)-[1, 1′-biphenyl]-4, 4′-diamine (TPD) as charge transporting agent into a photorefractive composite, wherein the liquid crystal 4-cyano-4-n-pentylbiphenyl (5CB) is the electro-optical unit and the perylene bisimide dimer DiPBI acts as sensitizing component. Investigation of the photocurrent reveals a strong enhancement of the photoconductivity. Compared to composites, wherein poly-n-vinylcarbazole (PVK) is the charge transporting agent, the internal photocurrent efficiency is enhanced 11 times. This dramatic improvement is attributed to an increase of charge generation and transport and it allows for a reduction of the applied electric field to get a photoconductivity that is comparable to PVK comprising composites.

© 2012 OSA

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(160.4890) Materials : Organic materials
(160.5320) Materials : Photorefractive materials

ToC Category:
Photorefractive Materials

Original Manuscript: February 22, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: May 3, 2012
Published: May 23, 2012

Thomas Schemme, Evgenij Travkin, Katharina Ditte, Wei Jiang, Zhaohui Wang, and Cornelia Denz, "TPD doped polystyrene as charge transporter in DiPBI sensitized photorefractive composites," Opt. Mater. Express 2, 856-863 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron.4, 832–839 (1998). [CrossRef]
  2. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B: Lasers Opt.64, 391–407 (1997). [CrossRef]
  3. W. Moerner, A. Grunnet-Jepsen, and C. Thompson, “Photorefractive Polymers,” Annu. Rev. Mater. Sci.27, 585–623 (1997). [CrossRef]
  4. O. Ostroverkhova and W. Moerner, “Organic photorefractives: Mechanisms, materials, and applications,” Chem. Rev.104, 3267–3314 (2004). [CrossRef] [PubMed]
  5. J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem.19, 7476–7489 (2009). [CrossRef]
  6. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010). [CrossRef] [PubMed]
  7. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express17, 11834–11849 (2009). [CrossRef] [PubMed]
  8. P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications 1: Basic Effects (Springer, 2006). [CrossRef]
  9. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev.94, 127–155 (1994). [CrossRef]
  10. S. Köber, M. Salvador, and K. Meerholz, “Organic Photorefractive Materials and Applications,” Adv. Mater.23, 4725–4763 (2011). [CrossRef]
  11. D. V. Steenwinckel, E. Hendrickx, and A. Persoons, “Dynamics and steady-state properties of photorefractive poly(N-vinylcarbazole)-based composites sensitized with (2,4,7-trinitro-9-fluorenylidene)malononitrile in a 0–3 wt % range,” J. Chem. Phys.114, 9557–9564 (2001). [CrossRef]
  12. J. Zhang and K. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett.72, 2948–2950 (1998). [CrossRef]
  13. O. Ostroverkhova and K. Singer, “Space-charge dynamics in photorefractive polymers,” J. Appl. Phys.92, 1727–1743 (2002). [CrossRef]
  14. K. Ditte, W. Jiang, T. Schemme, C. Denz, and Z. Wang, “Innovative Sensitizer DiPBI Outperforms PCBM,” Adv. Mater.24, 2104–2108 (2012). [CrossRef] [PubMed]
  15. G. B. Jung, M. Yoshida, T. Mutai, R. Fujimura, S. Ashihara, T. Shimura, K. Araki, and K. Kuroda, “High-speed TPD-based Photorefractive Polymer Composites,” Sen’i Gakkaishi60, 193–197 (2004). [CrossRef] [PubMed]
  16. S. R. Mohan and M. Joshi, “Field dependence of hole mobility in TPD-doped polystyrene,” Solid State Commun.139, 181–185 (2006). [CrossRef]
  17. K. Ogino, T. Nomura, T. Shichi, S.-H. Park, H. Sato, T. Aoyama, and T. Wada, “Synthesis of Polymers Having Tetraphenyldiaminobiphenyl Units for a Host Polymer of Photorefractive Composite,” Chem. Mater.9, 2768–2775 (1997). [CrossRef]
  18. H. J. Bolink, V. V. Krasnikov, P. H. J. Kouwer, and G. Hadziioannou, “A Novel Polyaryl Ether Based Photorefractive Composite,” Chem. Mater.10, 3951–3957 (1998). [CrossRef]
  19. E. Hendrickx, B. Kippelen, S. Thayumanavan, S. R. Marder, A. Persoons, and N. Peyghambarian, “High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60,” J. Chem. Phys.112, 9557–9561 (2000). [CrossRef]
  20. F. Khan, A.-M. Hor, and P. R. Sundararajan, “Morphological reasoning for the enhanced charge carrier mobility of a hole transport molecule in polystyrene,” Pure Appl. Chem.76, 1509–1520 (2004). [CrossRef]
  21. A. Grunnet-Jepsen, D. Wright, B. Smith, M. Bratcher, M. DeClue, J. Siegel, and W. Moerner, “Spectroscopic determination of trap density in C-60-sensitized photorefractive polymers,” Chem. Phys. Lett.291, 553–561 (1998). [CrossRef]
  22. M.-M. Shi, H.-Z. Chen, J.-Z. Sun, J. Ye, and M. Wang, “Excellent ambipolar photoconductivity of PVK film doped with fluoroperylene diimide,” Chem. Phys. Lett.381, 666–671 (2003). [CrossRef]
  23. J. Morgado, L. Alccer, M. Esteves, N. Pires, and B. Gigante, “New stylbene-based arylamines with dehydroabietic acid methyl ester moieties for organic light-emitting diodes,” Thin Solid Films515, 7697–7700 (2007). [CrossRef]
  24. A. Lv, S. R. Puniredd, J. Zhang, Z. Li, H. Zhu, W. Jiang, H. Dong, Y. He, L. Jiang, Y. Li, W. Pisula, Q. Meng, W. Hu, and Z. Wang, “High Mobility Air Stable Organic Single Crystal Transistors of a n-Type Diperylene Bisimide,” Adv. Mater. (to be published). [PubMed]
  25. H. Qian, Z. Wang, W. Yue, and D. Zhu, “Exceptional Coupling of Tetrachloroperylene Bisimide: Combination of Ullmann Reaction and C–H Transformation,” J. Am. Chem. Soc.129, 10664–10665 (2007). [CrossRef] [PubMed]
  26. D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ.39, 333–335 (1962). [CrossRef]
  27. T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B61, 13515–13527 (2000). [CrossRef]
  28. P. Yeh, “Two-Wave Mixing in Nonlinear Media,” IEEE J. Quantum. Electron.25, 97–132 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited