OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 884–890

Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber

Chengbo Mou, Raz Arif, Aleksey Rozhin, and Sergei Turitsyn  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 6, pp. 884-890 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1481 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have proposed and demonstrated passive harmonic mode locking of an erbium doped fiber laser with soliton pulse shaping using carbon nanotubes polyvinyl alcohol film. Two types of samples prepared by using filtration and centrifugation were studied. The demonstrated fiber laser can support 10th harmonic order corresponding to 245 MHz repetition rate with an output power of ~12 mW. More importantly, all stable harmonic orders show timing jitter below 10 ps. The output pulses energies are between 25 to 56 pJ. Both samples result in the same central wavelength of output optical spectrum with similar pulse duration of ~1 ps for all harmonic orders. By using the same laser configuration, centrifugated sample exhibits slightly lower pulse chirp.

© 2012 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Nonlinear Optical Materials

Original Manuscript: March 23, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: May 14, 2012
Published: May 31, 2012

Virtual Issues
Nanocarbon for Photonics and Optoelectronics (2012) Optical Materials Express

Chengbo Mou, Raz Arif, Aleksey Rozhin, and Sergei Turitsyn, "Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber," Opt. Mater. Express 2, 884-890 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009). [CrossRef]
  2. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett.27(9), 730–732 (1991). [CrossRef]
  3. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fiber soliton ring lasers,” Electron. Lett.29(21), 1860–1861 (1993). [CrossRef]
  4. S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett.20(2), 189–191 (1995). [CrossRef] [PubMed]
  5. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B14(1), 144–154 (1997). [CrossRef]
  6. B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett.23(2), 123–125 (1998). [CrossRef] [PubMed]
  7. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett.34(14), 2120–2122 (2009). [CrossRef] [PubMed]
  8. Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett.81(6), 975–977 (2002). [CrossRef]
  9. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004). [CrossRef]
  10. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004). [CrossRef]
  11. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett.88(5), 051118 (2006). [CrossRef]
  12. F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, “A passively mode-locked femtosecond soliton fiber laser at 1.5 µm with a CNT-doped polycarbonate saturable absorber,” Opt. Express16(26), 21191–21198 (2008). [CrossRef] [PubMed]
  13. A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett.92(17), 171113 (2008). [CrossRef]
  14. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38-39), 3874–3899 (2009). [CrossRef]
  15. Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express17(22), 20233–20241 (2009). [CrossRef] [PubMed]
  16. C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett.36(19), 3831–3833 (2011). [CrossRef] [PubMed]
  17. A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express16(15), 11337–11343 (2008). [CrossRef] [PubMed]
  18. F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 113 fs fiber laser operating at 1.56 µm using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide,” Opt. Express18(9), 9712–9721 (2010). [CrossRef] [PubMed]
  19. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009). [CrossRef]
  20. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008). [CrossRef] [PubMed]
  21. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009). [CrossRef]
  22. Y. W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, “All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film,” Opt. Lett.32(11), 1399–1401 (2007). [CrossRef] [PubMed]
  23. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett.32(2), 148–150 (2007). [CrossRef] [PubMed]
  24. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett.32(15), 2242–2244 (2007). [CrossRef] [PubMed]
  25. Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007). [CrossRef]
  26. S. Y. Choi, F. Rotermund, H. Jung, K. Oh, and D. I. Yeom, “Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber,” Opt. Express17(24), 21788–21793 (2009). [CrossRef] [PubMed]
  27. A. Martinez, K. M. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express16(20), 15425–15430 (2008). [CrossRef] [PubMed]
  28. A. Martinez, K. M. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber,” Opt. Express18(11), 11008–11014 (2010). [CrossRef] [PubMed]
  29. C. Mou, A. G. Rozhin, R. Arif, K. Zhou, and S. Turitsyn, “Polarization insensitive in-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber microchamber,” Appl. Phys. Lett.100(10), 101110 (2012). [CrossRef]
  30. J. W. Nicholson and D. J. DiGiovanni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett.20(24), 2123–2125 (2008). [CrossRef]
  31. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011). [CrossRef] [PubMed]
  32. L. Yu-Chan, C. Kuang-Nan, and L. Gong-Ru, “Passively harmonic mode-locking of fiber ring laser using a carbon-nanotube embedded PVA saturable absorber,” in OptoeElectronics and Communications Conference (OECC), 2011 16th (IEEE, 2011), pp. 788–789.
  33. K. Jiang, S. N. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett.22(11), 754–756 (2010). [CrossRef]
  34. C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express19(20), 19775–19780 (2011). [CrossRef] [PubMed]
  35. S. A. Zhou, D. G. Ouzounov, and F. W. Wise, “Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz,” Opt. Lett.31(8), 1041–1043 (2006). [CrossRef] [PubMed]
  36. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A71(5), 053809 (2005). [CrossRef]
  37. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron.34(9), 1749–1757 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited