OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 7 — Jul. 1, 2012
  • pp: 893–899

Uniform liquid crystal alignment on metallic nanohole arrays by vapor-phase deposition of silane coupling agent

Hiroyuki Yoshida, Takayuki Matsui, Atsushi Miura, Naoki Ikeda, Masayuki Ochiai, Yoshimasa Sugimoto, Hisayoshi Fujikawa, and Masanori Ozaki  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 7, pp. 893-899 (2012)
http://dx.doi.org/10.1364/OME.2.000893


View Full Text Article

Enhanced HTML    Acrobat PDF (1258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Uniform homeotropic alignment of nematic liquid crystals is achieved on a square array of metallic nanoholes through vapor-phase deposition of a fluorinated silane-coupling agent. We show through polarization optical microscopy and optical spectroscopy that the monolayer formed can induce homeotropic alignment on the nanohole array without disturbing its optical properties. The proposed technique is a step towards realizing electro-tunable metamaterials with controlled liquid crystal orientation.

© 2012 OSA

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Optical Devices

History
Original Manuscript: April 25, 2012
Revised Manuscript: May 24, 2012
Manuscript Accepted: May 24, 2012
Published: June 1, 2012

Citation
Hiroyuki Yoshida, Takayuki Matsui, Atsushi Miura, Naoki Ikeda, Masayuki Ochiai, Yoshimasa Sugimoto, Hisayoshi Fujikawa, and Masanori Ozaki, "Uniform liquid crystal alignment on metallic nanohole arrays by vapor-phase deposition of silane coupling agent," Opt. Mater. Express 2, 893-899 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-7-893


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40, 2494–2507 (2011). [CrossRef] [PubMed]
  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008). [CrossRef] [PubMed]
  3. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press; Oxford University Press, Oxford, New York, 1993).
  4. D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metama-terials with tunable negative-zero-positive refractive indices,” Opt. Express15, 3342–3347 (2007). [CrossRef] [PubMed]
  5. X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007). [CrossRef]
  6. F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008). [CrossRef]
  7. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010). [CrossRef]
  8. F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011). [CrossRef] [PubMed]
  9. J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012). [CrossRef]
  10. A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012). [CrossRef]
  11. D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28, 1683–1686 (1972). [CrossRef]
  12. J. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002). [CrossRef] [PubMed]
  13. J. S. Gwag, J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief” Appl. Phys. Lett.91, 073504 (2007). [CrossRef]
  14. J.-i. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008). [CrossRef]
  15. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett.24, 256–258 (1999). [CrossRef]
  16. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009). [CrossRef]
  17. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010). [CrossRef]
  18. Y. J. Liu, E. S. P. Leong, B. Wang, and J. H. Teng, “Optical transmission enhancement and tuning by overylaying liquid crystals on a gold film with patterned nanoholes,” Plasmonics6, 659–664 (2011). [CrossRef]
  19. C. Huang, H. E. Katz, and J. E. West, “Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics,” Langmuir23, 13223–13231 (2007). [CrossRef] [PubMed]
  20. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  21. G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited