OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 7 — Jul. 1, 2012
  • pp: 907–913

> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO

R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 7, pp. 907-913 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavelength conversion efficiency to the UV region is limited by a host of factors. To overcome several of these constraints, we use a fluxless-grown BBO crystal for fourth harmonic conversion of a linearly polarized Nd:YAG microchip laser, passively Q-switched with [110] cut Cr4+:YAG. The high quality BBO crystal used in the picosecond pulse width regime enables 60% conversion efficiency to give 3.4 MW peak power, 250 ps, 100 Hz pulses at 266 nm.

© 2012 OSA

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

Original Manuscript: April 16, 2012
Revised Manuscript: May 16, 2012
Manuscript Accepted: May 16, 2012
Published: June 12, 2012

Virtual Issues
Advances in Optical Materials (2012) Optical Materials Express

R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, "> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO," Opt. Mater. Express 2, 907-913 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.
  2. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001). [CrossRef]
  3. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express16(24), 19891–19899 (2008). [CrossRef] [PubMed]
  4. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express20(3), 2881–2886 (2012). [CrossRef] [PubMed]
  5. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010). [CrossRef]
  6. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011). [CrossRef] [PubMed]
  7. H. Kan, A. Sone, H. Sakai, T. Taira, N. Pavel, and V. Lupei, “Laser light source,” U. S. Patent No. 6,931,047 B2 (dated Aug. 16, 2005).
  8. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express19(20), 19135–19141 (2011). [CrossRef] [PubMed]
  9. R. Bhandari and T. Taira, “Megawatt level UV output from [110] Cr4+:YAG passively Q-switched microchip laser,” Opt. Express19(23), 22510–22514 (2011). [CrossRef] [PubMed]
  10. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [Invited],” Opt. Mater. Express1(5), 1040–1050 (2011). [CrossRef]
  11. M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010). [CrossRef]
  12. A. Dubietis, G. Tamošauskas, A. Varanavičius, and G. Valiulis, “Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm,” Appl. Opt.39(15), 2437–2440 (2000). [CrossRef] [PubMed]
  13. N. Kondratyuk and A. Shagov, “Nonlinear absorption at 266 nm in BBO crystal and its influence on frequency conversion,” Proc. SPIE4751, 110–115 (2002). [CrossRef]
  14. G. Kurdi, K. Osway, J. Klebniczki, M. Divall, E. J. Divall, A. Peter, K. Polgar, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Proceedings of Advanced Solid State Photonics, Technical Digest (Optical Society of America, Washington, D.C., 2005), paper MF18.
  15. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987). [CrossRef]
  16. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996). [CrossRef]
  17. H. Sakai, H. Kan, and T. Taira, “Passive Q-switch laser device,” U. S. Patent No. 7,664,148 B2 (dated Feb. 16, 2010).
  18. M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited