OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 7 — Jul. 1, 2012
  • pp: 929–941

Guiding and thermal properties of a hybrid polymer-infused photonic crystal fiber

Christos Markos, Kyriakos Vlachos, and George Kakarantzas  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 7, pp. 929-941 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we investigate the guiding properties of a hybrid polymer (poly-dimethylsiloxane)/silica photonic crystal fiber (PCF). In particular, we demonstrate how the basic guiding properties of a conventional PCF are changed due to the infusion of poly-dimethylsiloxane (PDMS) in its air-holes. We show that PDMS infiltration allows tuning of single mode operation, confinement loss, effective modal area (EMA) and numerical aperture (NA) with wavelength and/or temperature. This is primarily due to the enhancement of evanescent field interaction, lending some important characteristics for designing tunable fiber devices. Numerical calculations were performed for different relative hole sizes, d/Λ (0.35-0.75), of PCF for a 500-1700nm wavelength and 0-100°C temperature range, whereas direct comparison with a conventional air-filled PCF is also shown.

© 2012 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(160.6840) Materials : Thermo-optical materials
(230.1150) Optical devices : All-optical devices
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 8, 2012
Revised Manuscript: May 27, 2012
Manuscript Accepted: June 16, 2012
Published: June 19, 2012

Christos Markos, Kyriakos Vlachos, and George Kakarantzas, "Guiding and thermal properties of a hybrid polymer-infused photonic crystal fiber," Opt. Mater. Express 2, 929-941 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  3. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  4. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004). [CrossRef] [PubMed]
  5. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009). [CrossRef] [PubMed]
  6. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightwave Technol.24(9), 3427–3432 (2006). [CrossRef]
  7. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Proc. Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2002, pp. 466–468.
  8. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  9. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011). [CrossRef] [PubMed]
  10. A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fiber Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010). [CrossRef] [PubMed]
  11. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008). [CrossRef] [PubMed]
  12. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett.32(12), 1647–1649 (2007). [CrossRef] [PubMed]
  13. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008). [CrossRef]
  14. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000). [CrossRef]
  15. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010). [CrossRef] [PubMed]
  16. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009). [CrossRef]
  17. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002). [CrossRef] [PubMed]
  18. P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, “Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber,” Electron. Lett.41(8), 463–464 (2005). [CrossRef]
  19. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001). [CrossRef]
  20. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express14(24), 11616–11621 (2006). [CrossRef] [PubMed]
  21. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009). [CrossRef] [PubMed]
  22. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011). [CrossRef] [PubMed]
  23. Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010).
  24. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009). [CrossRef]
  25. http://www.nktphotonics.com/lmafibers-specifications
  26. K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005). [CrossRef]
  27. C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express12(25), 6165–6177 (2004). [CrossRef] [PubMed]
  28. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express10(17), 853–864 (2002). [PubMed]
  29. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  30. E. Palik, Handbook of Optical Constants of Solids I–III (Academic, 1998).
  31. M. Nielsen and N. Mortensen, “Photonic crystal fiber design based on the V-parameter,” Opt. Express11(21), 2762–2768 (2003). [CrossRef] [PubMed]
  32. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett.28(20), 1879–1881 (2003). [CrossRef] [PubMed]
  33. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, “Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers,” Opt. Lett.28(20), 1882–1884 (2003). [CrossRef] [PubMed]
  34. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26(21), 1660–1662 (2001). [CrossRef] [PubMed]
  35. K. Petermann, “Fundamental mode micro bending loss in graded index and w fibers,” Opt. Quantum Electron.9(2), 167–175 (1977). [CrossRef]
  36. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703 (1977).
  37. N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett.14(8), 1094–1096 (2002). [CrossRef]
  38. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express10(7), 341–348 (2002). [PubMed]
  39. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fiber for evanescent sensing applications,” Opt. Express14(26), 13056–13066 (2006). [CrossRef] [PubMed]
  40. H. R. Sørensen, J. Canning, J. Lægsgaard, and K. Hansen, “Control of the wavelength dependent thermo-optic coefficients in structured fibers,” Opt. Express14(14), 6428–6433 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (876 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited