OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 7 — Jul. 1, 2012
  • pp: 942–947

Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses

Moritz Emons, Kotaro Obata, Thomas Binhammer, Aleksandr Ovsianikov, Boris N. Chichkov, and Uwe Morgner  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 7, pp. 942-947 (2012)
http://dx.doi.org/10.1364/OME.2.000942


View Full Text Article

Enhanced HTML    Acrobat PDF (7327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanofabrication of structures with a feature size of sub-50 nm with ultrashort-laser based two-photon polymerization (2PP) technique is presented. The spatial resolution of the 2PP structures depends on the characteristics of the polymer material and the laser system used for fabrication. Here we compare the successful creation of sub-100 nm structures with two different few-cycle laser systems and chemically modified zirconium-based sol-gel composite material using cross-linker for resolution enhancement.

© 2012 OSA

OCIS Codes
(160.6060) Materials : Solgel
(320.7160) Ultrafast optics : Ultrafast technology
(350.3390) Other areas of optics : Laser materials processing
(350.5730) Other areas of optics : Resolution
(160.5335) Materials : Photosensitive materials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: April 16, 2012
Revised Manuscript: June 8, 2012
Manuscript Accepted: June 13, 2012
Published: June 20, 2012

Virtual Issues
Advances in Optical Materials (2012) Optical Materials Express

Citation
Moritz Emons, Kotaro Obata, Thomas Binhammer, Aleksandr Ovsianikov, Boris N. Chichkov, and Uwe Morgner, "Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses," Opt. Mater. Express 2, 942-947 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-7-942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009). [CrossRef] [PubMed]
  2. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  3. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra40, 72–80 (2006).
  4. M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” Proc. SPIE7204, 72040C-1–72040C-11 (2009). [CrossRef]
  5. M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009). [CrossRef]
  6. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011). [CrossRef] [PubMed]
  7. M. Rumi and J. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon.2(4), 451–518 (2010). [CrossRef]
  8. H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci.170, 169–274 (2004).
  9. T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002). [CrossRef]
  10. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt.45(1), 53–62 (2006). [CrossRef] [PubMed]
  11. M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Optik Photonik6(4), 40–43 (2011). [CrossRef]
  12. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007). [CrossRef] [PubMed]
  13. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005). [CrossRef]
  14. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007). [CrossRef]
  15. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).
  16. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008). [CrossRef] [PubMed]
  17. M. Emons, A. Steinmann, T. Binhammer, G. Palmer, M. Schultze, and U. Morgner, “Sub-10-fs pulses from a MHz-NOPA with pulse energies of 0.4 µJ,” Opt. Express18(2), 1191–1196 (2010). [CrossRef] [PubMed]
  18. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, “Passively mode-locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion,” Opt. Express15(24), 16017–16021 (2007). [CrossRef] [PubMed]
  19. A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, “Generation of 9-μJ 420-fs pulses by fiber-based amplification of a cavity-dumped Yb:KYW laser oscillator,” Laser Phys.18(5), 527–529 (2008). [CrossRef]
  20. VENTEON | PULSE:ONE, http://venteon.com .
  21. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009). [CrossRef] [PubMed]
  22. P. Wei, N. Li, and L. Feng, “Two-photon polymerization system with diffractive superresolution element,” IEEE Sens. J.11(1), 194–198 (2011). [CrossRef]
  23. L. Kelemen, P. Ormos, and G. Vizsnyiczai, “Two-photon polymerization with optimized spatial light modulator,” J. Eur. Opt. Soc. Rapid Publ.6, 11029 (2011). [CrossRef]
  24. F. Burmeister, U. D. Zeitner, S. Nolte, and A. Tünnermann, “High numerical aperture hybrid optics for two-photon polymerization,” Opt. Express20(7), 7994–8005 (2012). [CrossRef] [PubMed]
  25. Schwerpunktprogramm 1327 der Deutschen Forschungsgemeinschaft, http://www.spp1327.de/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited