OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 7 — Jul. 1, 2012
  • pp: 948–961

Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited]

A. V. Vasudevan Nampoothiri, Andrew M. Jones, C. Fourcade-Dutin, Chenchen Mao, Neda Dadashzadeh, Bastian Baumgart, Y.Y. Wang, M. Alharbi, T. Bradley, Neil Campbell, F. Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 7, pp. 948-961 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development of hollow core photonic crystal fibers with low losses over a broad spectral region in the near IR enabled the demonstration of a novel laser type - Hollow-core Optical Fiber Gas Laser (HOFGLAS). The laser combines attractive features of fiber lasers such as compactness and long interaction length of pump and laser radiation with those of gas lasers such as the potential for high output power and narrow line width. This paper summarizes recent developments and describes the demonstration of C2H2 and HCN prototype lasers. Avenues to extend laser emission further into the IR are discussed.

© 2012 OSA

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.4130) Lasers and laser optics : Molecular gas lasers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 30, 2012
Revised Manuscript: June 6, 2012
Manuscript Accepted: June 12, 2012
Published: June 20, 2012

Virtual Issues
Advances in Optical Materials (2012) Optical Materials Express
(2012) Advances in Optics and Photonics

A. V. Vasudevan Nampoothiri, Andrew M. Jones, C. Fourcade-Dutin, Chenchen Mao, Neda Dadashzadeh, Bastian Baumgart, Y.Y. Wang, M. Alharbi, T. Bradley, Neil Campbell, F. Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph, "Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited]," Opt. Mater. Express 2, 948-961 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961). [CrossRef]
  2. E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  3. Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng.49(9), 091003 (2010). [CrossRef]
  4. A. A. Ionin, “Electric Discharge CO Lasers,” in Gas Lasers (CRC Press, 2007), pp. 201–237.
  5. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett.28(23), 2336–2338 (2003). [CrossRef] [PubMed]
  6. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun.260(2), 696–698 (2006). [CrossRef]
  7. J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE7581, 75810G, 75810G–5 (2010). [CrossRef]
  8. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002). [CrossRef] [PubMed]
  10. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  11. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009). [CrossRef] [PubMed]
  12. F. Couny, F. Benabid, and O. Carraz, “Enhanced SRS in H2 filled hollow core photonic crystal fiber by use of fiber Bragg grating,” J. Opt. A, Pure Appl. Opt.9(2), 156–159 (2007). [CrossRef]
  13. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett.99(14), 143903 (2007). [CrossRef] [PubMed]
  14. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  15. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011). [CrossRef] [PubMed]
  16. A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).
  17. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011). [CrossRef]
  18. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006). [CrossRef] [PubMed]
  19. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  20. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008). [CrossRef] [PubMed]
  21. C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express15(11), 6690–6695 (2007). [CrossRef] [PubMed]
  22. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, 2001).
  23. X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett.32(16), 2381–2383 (2007). [CrossRef] [PubMed]
  24. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett.34(20), 3062–3064 (2009). [CrossRef] [PubMed]
  25. H. Többen, “Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass,” Electron. Lett.28(14), 1361–1362 (1992). [CrossRef]
  26. S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett.83(7), 1316–1318 (2003). [CrossRef]
  27. J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett.31(15), 1250–1251 (1995). [CrossRef]
  28. C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron.40(10), 1471–1477 (2004). [CrossRef]
  29. A. Ratanavis, N. Campbell, A. V. V. Nampoothiri, and W. Rudolph, “Performance and spectral tuning of optically overtone pumped molecular lasers,” IEEE J. Quantum Electron.45(5), 488–498 (2009). [CrossRef]
  30. J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000). [CrossRef]
  31. M. I. Buchwald, C. R. Jones, H. R. Fetterman, and H. R. Schlossberg, “Direct optically pumped multiwavelength CO2 laser,” Appl. Phys. Lett.29(5), 300–302 (1976). [CrossRef]
  32. D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express18(17), 17865–17875 (2010). [CrossRef] [PubMed]
  33. B. Wellegehausen, “Optically pumped CW dimer lasers,” IEEE J. Quantum Electron.15(10), 1108–1130 (1979). [CrossRef]
  34. R. L. Byer, R. L. Herbst, H. Kildal, and M. D. Levenson, “Optically pumped molecular iodine vapor-phase laser,” Appl. Phys. Lett.20(11), 463–466 (1972). [CrossRef]
  35. J. B. Koffend and R. W. Field, “cw optically pumped molecular iodine laser,” J. Appl. Phys.48(11), 4468–4472 (1977). [CrossRef]
  36. F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010). [CrossRef]
  37. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19(25), 25723–25728 (2011). [CrossRef] [PubMed]
  38. HITRAN database, http://cfa-www.harvard.edu/HITRAN/
  39. GEISA, spectroscopic database, http://ether.ipsl.jussieu.fr/etherTypo/?id=1293&L=0
  40. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998). [CrossRef]
  41. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  42. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011). [CrossRef] [PubMed]
  43. A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012). [CrossRef]
  44. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B17(7), 1263–1270 (2000). [CrossRef]
  45. A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, “Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1,” J. Mol. Spectrosc.134(1), 134–153 (1989). [CrossRef]
  46. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express18(3), 1946–1951 (2010). [CrossRef] [PubMed]
  47. J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express12(4), 717–723 (2004). [CrossRef] [PubMed]
  48. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995). [CrossRef] [PubMed]
  49. M. Herman, A. Campargue, M. I. El Idrissi, and J. Vander Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data32(3), 921–1361 (2003). [CrossRef]
  50. A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996). [CrossRef] [PubMed]
  51. K.-R. Sui, Y.-W. Shi, X.-L. Tang, X.-S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett.33(4), 318–320 (2008). [CrossRef] [PubMed]
  52. R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron.8(11), 838–843 (1972). [CrossRef]
  53. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  54. P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett.19(5), 132–134 (1971). [CrossRef]
  55. L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transf.48(5-6), 537–566 (1992). [CrossRef]
  56. J. Han, K. Freel, and M. C. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm-1,” J. Chem. Phys.135(24), 244304 (2011). [CrossRef] [PubMed]
  57. A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun.283(6), 1075–1080 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited