OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 7 — Jul. 1, 2012
  • pp: 969–977

Visible and near infrared, wide-angle, anti-reflection coatings with self-cleaning on glass

Kelly Cristine Camargo, Alexandre Fassini Michels, Fabiano Severo Rodembusch, Matheus Francioni Kuhn, and Flavio Horowitz  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 7, pp. 969-977 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work self-cleaning and transparent surfaces were produced on glass surface with simultaneous wide-angle and good optical transmittance on the visible region. These properties are pursued by combination of multi-scale surface topology based on silica nanoparticles (SNPs), index grading and interference coating, as well as polytetrafluoroethylene (PTFE) self-assembly, using two approaches. In the first, two-layer approach (glass/SNPs/PTFE), the resulting samples presented a water contact angle (WCA) of 169° ± 2° with very low hysteresis, as well as significant antireflection. The second, three-layer approach (glass/SNPs/silica aerogel/PTFE), produced surfaces with WCA of 158° ± 2° with also very low hysteresis (<5°), in addition to normal transmittance of 99% or higher, which decreased less than 2% at 20° incidence. These results show that proper structure-coated glass, with a combination of interference and graded-index effects, may provide simultaneous wide-angle antireflection and self-cleaning properties.

© 2012 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(310.1210) Thin films : Antireflection coatings

ToC Category:
Optical Design and Fabrication

Original Manuscript: May 17, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: June 19, 2012
Published: June 22, 2012

Kelly Cristine Camargo, Alexandre Fassini Michels, Fabiano Severo Rodembusch, Matheus Francioni Kuhn, and Flavio Horowitz, "Visible and near infrared, wide-angle, anti-reflection coatings with self-cleaning on glass," Opt. Mater. Express 2, 969-977 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Abe, Y. Sanada, and T. Morimoto, “Anti-reflective coatings for CRTs by sol-gel process,” J. Sol-Gel Sci. Technol.26(1–3), 709–713 (2003). [CrossRef]
  2. S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Sol. Energy Mater. Sol. Cells90(16), 2710–2719 (2006). [CrossRef]
  3. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011). [CrossRef]
  4. W. Glaubitt and P. Löbmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012). [CrossRef]
  5. N. Ford and P. W. McMillan, “Integral antireflection films for glasses - A Review,” Glass Technol.26(2), 104–107 (1985).
  6. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (MacMillan Publishing Company, 1986).
  7. R. R. Willey, “Predicting achievable design performance of broadband antireflection coatings,” Appl. Opt.32(28), 5447–5451 (1993). [CrossRef] [PubMed]
  8. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt.50(9), C31–C35 (2011). [CrossRef] [PubMed]
  9. W. Groh and A. Zimmermann, “What is the lowest refractive-index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991). [CrossRef]
  10. X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005). [CrossRef]
  11. T. Y. Wei, T. F. Chang, S. Y. Lu, and Y. C. Chang, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc.90(7), 2003–2007 (2007). [CrossRef]
  12. S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature127(3211), 741–744 (1931). [CrossRef]
  13. M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010). [CrossRef]
  14. X. C. Zhou, L. P. Zhong, and Y. P. Xu, “Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying,” Inorg. Mater.44(9), 976–979 (2008). [CrossRef]
  15. A. A. P. Mansur, O. L. Nascimento, W. L. Vasconcelos, and H. S. Mansur, “Chemical functionalization of ceramic tile surfaces by silane coupling agents: Polymer modified mortar adhesion mechanism implications,” Mater. Res.11(3), 293–302 (2008). [CrossRef]
  16. S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, “Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage,” Nature374(6521), 439–443 (1995). [CrossRef]
  17. A. Marmur, “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?” Langmuir19(20), 8343–8348 (2003). [CrossRef]
  18. J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun.196(5), 658–696 (2008). [CrossRef]
  19. X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010). [CrossRef]
  20. M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009). [CrossRef] [PubMed]
  21. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007). [CrossRef] [PubMed]
  22. D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010). [CrossRef]
  23. M. J. Minot, “Angular reflectance of single-layer gradient refractive-index films,” J. Opt. Soc. Am.67(8), 1046–1050 (1977). [CrossRef]
  24. A. M. Munshi, V. N. Singh, M. Kumar, and J. P. Singh, “Effect of nanoparticle size on sessile droplet contact angle,” J. Appl. Phys.103(8), 084315 (2008). [CrossRef]
  25. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010). [CrossRef] [PubMed]
  26. K. C. Camargo, A. F. Michels, F. S. Rodembusch, and F. Horowitz, “Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chem. Commun. (Camb.)48(41), 4992–4994 (2012). [CrossRef] [PubMed]
  27. H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: Thickness dependence,” J. Mater. Sci. Mater. Electron.12(7), 361–364 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3680 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited