OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 1003–1010

Real-time three-dimensional holographic display using a monolithic organic compound dispersed film

Naoto Tsutsumi, Kenji Kinashi, Wataru Sakai, Junichi Nishide, Yutaka Kawabe, and Hiroyuki Sasabe  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 8, pp. 1003-1010 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Organic holographic materials such as photorefractive polymers are one of the promising candidates for the next generation three dimensional (3D) real-time display. Recently, we found that polymer composite of monolithic organic compound of 3-[(4-nitrophenyl)azo]-9H-carbazole-9-ethanol (NACzE) (30 wt%) doped transparent polymethylmethacrylate (PMMA) had capability of recording and displaying new images within a few seconds and fixed at ten seconds and viewing for a longer time without applying electric field. Here, we present 3D holographic display using monolithic organic compound NACzE dispersed transparent PMMA film sandwiched between two glass plates with size of 7.5 × 5 cm2. The thickness of film is ca. 50 μm. Images are easily and completely erased by over recording and it is accelerated by slight heating.

© 2012 OSA

OCIS Codes
(090.2870) Holography : Holographic display
(090.7330) Holography : Volume gratings
(190.5330) Nonlinear optics : Photorefractive optics
(190.2055) Nonlinear optics : Dynamic gratings
(090.5694) Holography : Real-time holography

ToC Category:
Photorefractive Materials

Original Manuscript: January 17, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 16, 2012
Published: July 3, 2012

Naoto Tsutsumi, Kenji Kinashi, Wataru Sakai, Junichi Nishide, Yutaka Kawabe, and Hiroyuki Sasabe, "Real-time three-dimensional holographic display using a monolithic organic compound dispersed film," Opt. Mater. Express 2, 1003-1010 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948). [CrossRef] [PubMed]
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt.33(2), 179–181 (1994). [CrossRef] [PubMed]
  3. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  4. T. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
  5. S. Fukushima, T. Kurokawa, and M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett.58(8), 787–789 (1991). [CrossRef]
  6. Y.-Z. Liu, J.-W. Dong, Y.-Y. Pu, B.-C. Chen, H.-X. He, and H.-Z. Wang, “High-speed full analytical holographic computations for true-life scenes,” Opt. Express18(4), 3345–3351 (2010). [CrossRef] [PubMed]
  7. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010). [CrossRef] [PubMed]
  8. X. Sang, F. C. Fan, C. C. Jiang, S. Choi, W. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett.34(24), 3803–3805 (2009). [CrossRef] [PubMed]
  9. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett.66(14), 1846–1849 (1991). [CrossRef] [PubMed]
  10. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004). [CrossRef] [PubMed]
  11. K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994). [CrossRef]
  12. B. Kippelen, Z. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, 1996), Chap. 8.
  13. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008). [CrossRef] [PubMed]
  14. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010). [CrossRef] [PubMed]
  15. N. Peyghambarian, P.-A. Blanche, A. Bablumyan, and M. Yamamoto, “Large area photorefractive polymers for updatable holographic 3D display,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).
  16. N. Tsutsumi, K. Kinashi, and W. Sakai, “Strategy for high performance photorefractive polymer composites,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe, and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).
  17. P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000). [CrossRef] [PubMed]
  18. J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002). [CrossRef]
  19. N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites,” Jpn. J. Appl. Phys.43(6A), 3466–3472 (2004). [CrossRef]
  20. J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)491(1), 217–222 (2008). [CrossRef]
  21. L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008). [CrossRef]
  22. A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)504(1), 44–51 (2009). [CrossRef]
  23. J. Nishde, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Non-electric field driving organic photorefractive devices,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).
  24. F. Gallego-Gómez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater.7(6), 490–497 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (5567 KB)     
» Media 2: MOV (8545 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited