OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 1026–1039

Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications

Jaetae Seo, Rafal Fudala, Wan-Joong Kim, Ryan Rich, Bagher Tabibi, Hyoyeong Cho, Zygmunt Gryczynski, Ignacy Gryczynski, and William Yu  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 8, pp. 1026-1039 (2012)
http://dx.doi.org/10.1364/OME.2.001026


View Full Text Article

Enhanced HTML    Acrobat PDF (1770 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid optical nanostructure of plasmon-coupled SQDs was developed for photonic applications. The coupling distances between the mono-layers of Au nanoparticles with a surface concentration of ~9.18 × 10−4 nm−2 and CdSe/ZnS SQDs with that of ~3.7 × 10−3 nm−2 were controlled by PMMA plasma etching. Time-resolved spectroscopy of plasmon-coupled SQDs revealed a strong shortening of the longest lifetime and ~9-fold PL enhancement. Polarization-resolved PL spectroscopy displayed linear polarization and depolarization at near- and far-field plasmon-coupling, respectively. The physical origin of PL enhancement could be attributable to both the large local field enhancement and the fast resonant energy transfer.

© 2012 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Nanomaterials

History
Original Manuscript: April 4, 2012
Revised Manuscript: June 11, 2012
Manuscript Accepted: June 11, 2012
Published: July 5, 2012

Citation
Jaetae Seo, Rafal Fudala, Wan-Joong Kim, Ryan Rich, Bagher Tabibi, Hyoyeong Cho, Zygmunt Gryczynski, Ignacy Gryczynski, and William Yu, "Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications," Opt. Mater. Express 2, 1026-1039 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-8-1026


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Smyder and T. D. Krauss, “Coming attraction for semiconductor quantum dots,” Mater. Today14(9), 382–387 (2011). [CrossRef]
  2. Q. Dai, C. E. Duty, and M. Z. Hu, “Semiconductor-nanocrystals-based white light-emitting diodes,” Small6(15), 1577–1588 (2010). [CrossRef] [PubMed]
  3. Y. Zhang and A. Clapp, “Overview of stabilizing ligands for biocompatible quantum dot nanocrystals,” Sensors (Basel)11(12), 11036–11055 (2011). [CrossRef] [PubMed]
  4. G. Zhang, S. Finefrock, D. Liang, G. G. Yadav, H. Yang, H. Fang, and Y. Wu, “Semiconductor nanostructure-based photovoltaic solar cells,” Nanoscale3(6), 2430–2443 (2011). [CrossRef] [PubMed]
  5. S. M. Ma, J. T. Seo, Q. Yang, R. Battle, L. Creekmore, K. Lee, B. Tabibi, and W. Yu, “The second hyperpolarizability of CdTe nanocrystals using polarization-resolved degenerate four-wave mixing,” Appl. Surf. Sci.253(15), 6612–6615 (2007). [CrossRef]
  6. Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. T. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009). [CrossRef] [PubMed]
  7. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124(9), 2049–2055 (2002). [CrossRef] [PubMed]
  8. A. A. Chistyakov, I. L. Martynov, K. E. Mochalov, V. A. Oleinikov, S. V. Sizova, E. A. Ustinovich, and K. V. Zakharchenko, “Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films,” Laser Phys.16(12), 1625–1632 (2006). [CrossRef]
  9. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60(7), 2744 (1974). [CrossRef]
  10. K. Okamoto, S. Vyawahare, and A. Scherer, “Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals,” J. Opt. Soc. Am. B23(8), 1674 (2006). [CrossRef]
  11. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express15(22), 14289–14298 (2007). [CrossRef] [PubMed]
  12. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2(12), 1449 (2002). [CrossRef]
  13. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett.5(8), 1557 (2005). [CrossRef] [PubMed]
  14. K. Okamoto, S. Vyawahare, and A. Scherer, “Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals,” J. Opt. Soc. Am. B23(8), 1674 (2006). [CrossRef]
  15. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B75(3), 033309 (2007). [CrossRef]
  16. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  17. D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett.11(3), 1049–1054 (2011). [CrossRef] [PubMed]
  18. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003). [CrossRef]
  19. W. W. Yu, E. Chang, J. C. Falkner, J. Zhang, A. M. Al-Somali, C. M. Sayes, J. Johns, R. Drezek, and V. L. Colvin, “Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers,” J. Am. Chem. Soc.129(10), 2871–2879 (2007). [CrossRef] [PubMed]
  20. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003). [CrossRef] [PubMed]
  21. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS Nanocrystals: correction,” Chem. Mater.16(3), 560 (2004). [CrossRef]
  22. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal. Chem.67(4), 735 (1995). [CrossRef]
  23. G. Mie, “Beitrage zur optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys.330(3), 377–445 (1908). [CrossRef]
  24. J. Chai, F. Lu, B. Li, and D. Y. Kwok, “Wettability interpretation of oxygen plasma modified poly(methyl methacrylate),” Langmuir20(25), 10919–10927 (2004). [CrossRef] [PubMed]
  25. V. C. Rucker, K. L. Havenstrite, B. A. Simmons, S. M. Sickafoose, A. E. Herr, and R. Shediac, “Functional antibody immobilization on 3-dimensional polymeric surfaces generated by reactive ion etching,” Langmuir21(17), 7621–7625 (2005). [CrossRef] [PubMed]
  26. J. T. Seo, Q. Yang, W. J. Kim, J. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett.34(3), 307–309 (2009). [CrossRef] [PubMed]
  27. M. V. Rigo, J. Seo, W.-J. Kim, and S. S. Jung, “Plasmon coupling of R6G-linked metal nanoparticle assemblies for surface-enhanced raman spectroscopy,” J. Vibr. Spectrosc.57, 315 (2011).
  28. S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003). [CrossRef]
  29. A. Sillen and Y. Engelborghs, “The correct use of “average” fluorescence parameters,” Photochem. Photobiol.67(5), 475 (1998).
  30. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2010).
  31. R. Fudala, M. E. Mummert, Z. Gryczynski, R. Rich, J. Borejdo, and I. Gryczynski, “Lifetime-based sensing of the hyaluronidase using fluorescein labeled hyaluronic acid,” J. Photochem. Photobiol. B106, 69–73 (2012). [CrossRef] [PubMed]
  32. M. Patting, “Evaluation of time-resolved fluorescence data: typical methods and problems,” Springer Ser Fluoresc.5, 233–258 (2008). [CrossRef]
  33. K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett.100(20), 207404 (2008). [CrossRef] [PubMed]
  34. M. V. Rigo and J. Seo, “Probing plasmon polarization-mediated photoluminescence enhancement on metal-semiconductor hybrid optical nanostructures,” Chem. Phys. Lett.517(4-6), 190–195 (2011). [CrossRef]
  35. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6(11), 2622–2625 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited