OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 1095–1100

Effects of growth pressure on erbium doped GaN infrared emitters synthesized by metal organic chemical vapor deposition

I-Wen Feng, Jing Li, Jingyu Lin, Hongxing Jiang, and John Zavada  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 8, pp. 1095-1100 (2012)
http://dx.doi.org/10.1364/OME.2.001095


View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Er doped GaN (GaN:Er) p-i-n structures were prepared by metal organic chemical vapor deposition. Effects of growth pressure on the optical performance of GaN:Er p-i-n structures have been investigated. Electroluminescence measurements revealed that the optimal growth pressure window for obtaining strong infrared emission intensity at 1.54 ┬Ám is around 20 torr, while the greater amount of Ga vacancies or non-raditive transitions were observed from the ones grown at lower or higher pressure. Our results point to possible applications in optical communications using current injected optical amplifiers based on GaN:Er p-i-n structures.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Laser Materials

History
Original Manuscript: April 23, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 17, 2012
Published: July 20, 2012

Virtual Issues
Advances in Optical Materials (2012) Optical Materials Express

Citation
I-Wen Feng, Jing Li, Jingyu Lin, Hongxing Jiang, and John Zavada, "Effects of growth pressure on erbium doped GaN infrared emitters synthesized by metal organic chemical vapor deposition," Opt. Mater. Express 2, 1095-1100 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-8-1095


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Birkhahn and A. J. Steckl, “Green emission from Er-doped GaN grown by molecular beam epitaxy on Si substrates,” Appl. Phys. Lett.73(15), 2143–2145 (1998). [CrossRef]
  2. A. J. Steckl, M. Garter, R. Birkhahn, and J. Scofield, “Green electroluminescence from Er-doped GaN Schottky barrier diodes,” Appl. Phys. Lett.73(17), 2450–2452 (1998). [CrossRef]
  3. R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Er-doped GaN and InxGa1-xN for optical communication,” in Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, K. P. O'Donnell and V. Dierolf, eds. (Springer, the Netherlands, 2010).
  4. A. A. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett.2(10), 714–717 (1990). [CrossRef]
  5. A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Room-temperature electroluminescence properties of Er, O-codoped GaAs injection-type light-emitting diodes grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.83(22), 4521–4523 (2003). [CrossRef]
  6. S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett.71(19), 2824–2826 (1997). [CrossRef]
  7. J. T. Torvik, C. H. Qiu, R. J. Feuerstein, J. I. Pankove, and F. Namavar, “Photo-, cathodo-, and electroluminescence from erbium and oxygen co-implanted GaN,” J. Appl. Phys.81(9), 6343–6350 (1997). [CrossRef]
  8. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett.89(15), 151903 (2006). [CrossRef]
  9. Q. Wang, R. Hui, R. Dahal, J. Y. Lin, and H. X. Jiang, “Carrier lifetime in erbium-doped GaN waveguide emitting in 1540 nm wavelength,” Appl. Phys. Lett.97(24), 241105 (2010). [CrossRef]
  10. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett.90(5), 051110 (2007). [CrossRef]
  11. T. C. Banwell and A. Jayakumar, “Exact analytical solution for current flow through diode with series resistance,” Electron. Lett.36(4), 291–292 (2000). [CrossRef]
  12. P. Barnes and T. Paoli, “Derivative measurements of the current-voltage characteristics of double-heterostructure injection lasers,” IEEE J. Quantum Electron.12(10), 633–639 (1976). [CrossRef]
  13. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett.68(5), 643–645 (1996). [CrossRef]
  14. R. Heitz, P. Thurian, I. Loa, L. Eckey, A. Hoffmann, I. Broser, K. Pressel, B. K. Meyer, and E. N. Mokhov, “Identification of the 1.19-eV luminescence in hexagonal GaN,” Phys. Rev. B Condens. Matter52(23), 16508–16515 (1995). [CrossRef] [PubMed]
  15. J. Baur, U. Kaufmann, M. Kunzer, J. Schneider, H. Amano, I. Akasaki, T. Detchprohm, and K. Hiramatsu, “Photoluminescence of residual transition metal impurities in GaN,” Appl. Phys. Lett.67(8), 1140–1142 (1995). [CrossRef]
  16. J. Baur, K. Maier, M. Kunzer, U. Kaufmann, J. Schneider, H. Amano, I. Akasaki, T. Detchprohm, and K. Hiramatsu, “Infrared luminescence of residual iron deep level acceptors in gallium nitride (GaN) epitaxial layers,” Appl. Phys. Lett.64(7), 857–859 (1994). [CrossRef]
  17. A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, “Nature of deep center emissions in GaN,” Appl. Phys. Lett.96(15), 151902 (2010). [CrossRef]
  18. R. Wang and A. J. Steckl, “Effect of Si and Er co-doping on green electroluminescence from GaN:Er ELDs,” in MRS Proceedings (2008), Vol. 1068, p. 1068–C05–03.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited