OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 1101–1110

Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser

Keiron Boyd, Heike Ebendorff-Heidepriem, Tanya M. Monro, and Jesper Munch  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 8, pp. 1101-1110 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel technique that can rapidly and accurately measure surface tension and viscosity by direct thermal processing of an optical fiber. We demonstrate the applicability of this technique for a variety of glass compositions from silica to soft glass fibers, and these results have been validated against results obtained with other techniques. In addition, this characterisation technique has been used to measure the surface tension and viscosity for previously unmeasured glass compositions. The techniques are ideal for acquiring critical parameters of relevance to the conditions for the controlled fabrication of new glass compositions into microstructured fibers.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Materials for Fiber Optics

Original Manuscript: May 23, 2012
Revised Manuscript: July 15, 2012
Manuscript Accepted: July 20, 2012
Published: July 23, 2012

Keiron Boyd, Heike Ebendorff-Heidepriem, Tanya M. Monro, and Jesper Munch, "Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser," Opt. Mater. Express 2, 1101-1110 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Fujino, C. Hwang, and K. Morinaga, “Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts,” J. Mater. Sci.40(9-10), 2207–2212 (2005). [CrossRef]
  2. W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42(1), 6–10 (1959). [CrossRef]
  3. C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical model of the spinning of microstructured fibres,” Opt. Express12(23), 5810–5820 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5810 . [CrossRef] [PubMed]
  4. C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical modeling of the self-pressurizing mechanism for microstructured fiber drawing,” J. Lightwave Technol.27(7), 871–878 (2009). [CrossRef]
  5. W. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express13(17), 6541–6549 (2005). [CrossRef] [PubMed]
  6. C. Hwang, B. K. Ryu, and S. Fujino, “Surface tension of bismuth borosilicate melts,” Thermochim. Acta531, 70–74 (2012). [CrossRef]
  7. S. Fujino, C. Hwang, and K. Morinaga, “Density, surface tension and viscosity of PbO/B2O3-SiO2 glass melts,” J. Am. Ceram. Soc.87(1), 10–16 (2004). [CrossRef]
  8. M. Yamashita, M. Suzuki, and H. Yamanaka, “Surface tension measurement of glass melts by maximum bubble pressure method,” Glastech. Ber.73, 337–343 (2000).
  9. A. E. Badger, C. W. Parmelee, and A. E. Williams, “Surface tension of various molten glasses,” J. Am. Ceram. Soc.20(1-12), 325–329 (1937). [CrossRef]
  10. C. A. Bradley, “Measurement of surface tension of viscous liquids,” J. Am. Ceram. Soc.21(10), 339–344 (1938). [CrossRef]
  11. S. Akhtar and M. Cable, “Some effects of atmosphere and minor constituents on the surface tension of glass melts,” Glass. Technol.9, 145–151 (1968).
  12. N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41(1), 18–22 (1958). [CrossRef]
  13. L. Shartsis, S. Spinner, and A. W. Smock, “Surface tension of compositions in the systems PbO-B2O3 and PbO-SiO2,” J. Am. Ceram. Soc.31(1), 23–27 (1948). [CrossRef]
  14. L. D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts (CRC Press, 2005), Chap. 5.
  15. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt.26(9), 1728–1731 (1987). [CrossRef] [PubMed]
  16. H. R. Lillie, “Viscosity of glass between the strain point and melting temperature,” J. Am. Ceram. Soc.14(7), 502–512 (1931). [CrossRef]
  17. E. L. Bourhis, Glass (Wiley-VCH, 2008), Chap. 6.
  18. C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2(1), 62–70 (2012). [CrossRef]
  19. J. Stoetzel, “Fabrication of optical glass fibres by extrusion,” internship report (Otto Schott Institute at the University of Jena (Germany) and Institute for Photonics & Advanced Sensing at the University of Adelaide, 2011).
  20. L. Shartsis and A. W. Smock, “Surface tension of some optical glasses,” J. Am. Ceram. Soc.30(4), 130–136 (1947). [CrossRef]
  21. S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids321(3), 169–174 (2003). [CrossRef]
  22. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986), Chap. 5.
  23. N. P. Bansal and R. H. Doremus, “Surface tension of ZrF4-BaF2-LaF3 glass,” J. Am. Ceram. Soc.67(10), C-197 (1984). [CrossRef]
  24. G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta46(6), 1061–1072 (1982). [CrossRef]
  25. H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited