OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 1121–1134

Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal

Pankaj Kumar, Shin-Woong Kang, and Seung Hee Lee  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 8, pp. 1121-1134 (2012)
http://dx.doi.org/10.1364/OME.2.001121


View Full Text Article

Enhanced HTML    Acrobat PDF (5580 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a direct switching between a transparent (or reflecting) planar (P) state to an opaque (or transparent) focal conic (FC) state and vice-versa of a polymer free bistable cholesteric light shutter without any homogeneous polyimide (PI) layer, is demonstrated based on the sign inversion of dielectric anisotropy of dual frequency liquid crystal (DFLC). The direct switching was achieved by applying square wave field at low (1 kHz) and high (50 kHz) frequency. As a result, the DFLC light shutter sustains bistable bright and dark states in electric field off state and exhibits excellent electro-optic performance. The direct switching from the FC to P states not only supports more uniform P state but also significantly reduces switching voltage by eliminating the high field homeotropic (H) state required for the switching in the conventional polymer stabilized cholesteric texture (PSCT) light shutter. The driving voltage applied to make a transition from the P to FC one is relatively low (3Vp-p/µm). Further, switching time from FC to P state was reduced drastically with homeotropic PI layer. Results show that dual frequency cholesteric liquid crystal (DFCLC) light shutter holds a great promise for use in energy efficient display devices and switchable windows.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Liquid Crystals

History
Original Manuscript: June 26, 2012
Revised Manuscript: July 24, 2012
Manuscript Accepted: July 25, 2012
Published: July 26, 2012

Citation
Pankaj Kumar, Shin-Woong Kang, and Seung Hee Lee, "Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal," Opt. Mater. Express 2, 1121-1134 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-8-1121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express11(6), 560–565 (2003). [CrossRef] [PubMed]
  2. H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002). [CrossRef]
  3. D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992). [CrossRef]
  4. M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997). [CrossRef]
  5. M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur. Phys. J. E Soft Matter15(4), 413–419 (2004). [CrossRef] [PubMed]
  6. G. D. Sharp, K. M. Johnson, and D. Doroski, “Continuously tunable smectic A(*) liquid-crystal color filter,” Opt. Lett.15(10), 523–525 (1990). [CrossRef] [PubMed]
  7. H. J. Masterson, G. D. Sharp, and K. M. Johnson, “Ferroelectric liquid-crystal tunable filter,” Opt. Lett.14(22), 1249–1251 (1989). [CrossRef] [PubMed]
  8. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).
  9. K. Lewis, G. Smith, I. Mason, and K. Rochester, “Design issues for tunable filters for optical telecommunications,” Proc. SPIE4679, 213–224 (2002). [CrossRef]
  10. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994). [CrossRef]
  11. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000). [CrossRef]
  12. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004). [CrossRef]
  13. Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002). [CrossRef]
  14. Y. Koikea, A. Mochizukia, and K. Yoshikawaa, “Phase transition-type liquid-crystal projection display,” Displays10(2), 93–99 (1989). [CrossRef]
  15. D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994). [CrossRef]
  16. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994). [CrossRef]
  17. B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers27, 39–42 (1996).
  18. J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998). [CrossRef]
  19. A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001). [CrossRef]
  20. D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol.2(1), 32–37 (2006). [CrossRef]
  21. W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995). [CrossRef] [PubMed]
  22. S. Shandrasekhar, Liquid Crystals (Cambridge University Press, 1992).
  23. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
  24. D.-K. Yang, L.-C. Chien, and Y. K. Fung, Liquid Crystals in Complex Geometries, G. P. Crawford and S. Zumer, eds. (Taylor & Francis, 1996), Chap. 1, pp. 103–142.
  25. Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995). [CrossRef]
  26. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons, Ltd. 2001), Chap. 3, pp. 98–99 (2001).
  27. T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys.85(11), 7511–7516 (1999). [CrossRef]
  28. K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J. C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express18(16), 16745–16750 (2010). [CrossRef] [PubMed]
  29. R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2, 112401 (2009).
  30. J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express3(2), 021702 (2010). [CrossRef]
  31. Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B86(1), 123–127 (2006). [CrossRef]
  32. M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6827–6830 (1999). [CrossRef]
  33. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express19(10), 9744–9749 (2011). [CrossRef] [PubMed]
  34. P. G. De Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun.6(3), 163–165 (1968). [CrossRef]
  35. K. H. Kim, D. H. Song, Z. G. Shen, B. W. Park, K. H. Park, J. H. Lee, and T. H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express19(11), 10174–10179 (2011). [CrossRef] [PubMed]
  36. X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005). [CrossRef]
  37. H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal‐wall interface from director distortions at high fields,” J. Appl. Phys.57(10), 4520–4526 (1985). [CrossRef]
  38. S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley -VCH, 1999), Chap. 4, p. 103.
  39. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Y. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett.36(14), 2632–2634 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited