OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 1141–1148

Self-assembled monolayer assisted bonding of Si and InP

I. Bakish, V. Artel, T. Ilovitsh, M. Shubely, Y. Ben-Ezra, A. Zadok, and C. N. Sukenik  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 8, pp. 1141-1148 (2012)
http://dx.doi.org/10.1364/OME.2.001141


View Full Text Article

Enhanced HTML    Acrobat PDF (1855 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A versatile procedure for the low-temperature bonding of silicon and indium-phosphide to silicon is proposed and demonstrated. The procedure relies on the deposition and functionalization of self-assembled, single molecular layers on the surface of one substrate, and the subsequent attachment of the monolayer to the surface of the other substrate with or without its own monolayer coating. The process is applicable to the fabrication of hybrid-silicon, active photonic devices.

© 2012 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.6000) Materials : Semiconductor materials
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Materials for Integrated Optics

History
Original Manuscript: July 2, 2012
Revised Manuscript: July 25, 2012
Manuscript Accepted: July 25, 2012
Published: July 26, 2012

Citation
I. Bakish, V. Artel, T. Ilovitsh, M. Shubely, Y. Ben-Ezra, A. Zadok, and C. N. Sukenik, "Self-assembled monolayer assisted bonding of Si and InP," Opt. Mater. Express 2, 1141-1148 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-8-1141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2002).
  2. L. Pavesi and D. J. Lockwood, eds., Silicon Photonics (Springer-Verlag, 2004).
  3. G. T. Reed, Silicon-Photonics: The State of the Art (John Wiley, 2008)
  4. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  6. D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “High data rate silicon optical modulator with self-aligned fabrication process,” paper OM2E.3 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).
  7. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  8. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  9. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007). [CrossRef]
  10. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express15(11), 6744–6749 (2007). [CrossRef] [PubMed]
  11. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007). [CrossRef] [PubMed]
  12. Y. H. Kuo, H. W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express16(13), 9936–9941 (2008). [CrossRef] [PubMed]
  13. H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A Hybrid silicon–AlGaInAs phase modulator,” IEEE Photon. Technol. Lett.20(23), 1920–1922 (2008). [CrossRef]
  14. H. W. Chen, Y. H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express16(25), 20571–20576 (2008). [CrossRef] [PubMed]
  15. X. K. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett.34(9), 1345–1347 (2009). [CrossRef] [PubMed]
  16. Y. Tang, J. Peters, and J. E. Bowers, “1.3μm hybrid silicon electroabsorption modulator with bandwidth beyond 67 GHz,” paper PDP5A.5 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).
  17. H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: problems and prospects,” J. Cryst. Growth95(1–4), 96–102 (1989). [CrossRef]
  18. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010). [CrossRef]
  19. D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damages in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc.147(7), 2699–2703 (2000). [CrossRef]
  20. J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc.102(1), 92–98 (1980). [CrossRef]
  21. S. Onclin, B. J. Ravoo, and D. N. Reinhoudt, “Engineering silicon oxide surfaces using self-assembled monolayers,” Angew. Chem. Int. Ed. Engl.44(39), 6282–6304 (2005). [CrossRef] [PubMed]
  22. A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996). [CrossRef] [PubMed]
  23. W. Wang, T. Lee, and M. A. Reed, “Mechanism of electron conduction in self-assembled alkanethiol monolayer devices,” Phys. Rev. B68(3), 035416 (2003). [CrossRef]
  24. W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005). [CrossRef]
  25. G. Kräuter, Y. Bluhm, C. Batz-Sohn, and U. Gösele, “The joining of parallel plates via organic monolayers: chemical reactions in a spatially confined system,” Adv. Mater. (Deerfield Beach Fla.)11(12), 1035–1038 (1999). [CrossRef]
  26. V. Artel, I. Bakish, T. Kraus, M. Shubely, Y. Ben-Ezra, E. Shekel, S. Zach, A. Zadok, and C. N. Sukenik, “Low temperature wafer bonding of silicon to InP and silicon to LiNbO3 using self-assembled monolayers,” paper OM3E.4 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).
  27. N. Balachander and C. N. Sukenik, “Monolayer transformation by nucleophilic substitution: applications to the Creation of new monolayer assemblies,” Langmuir6(11), 1621–1627 (1990). [CrossRef]
  28. S. Meth and C. N. Sukenik, “Siloxane-anchored thin films on silicon dioxide-modified stainless steel,” Thin Solid Films425(1-2), 49–58 (2003). [CrossRef]
  29. R. J. Collins and C. N. Sukenik, “Sulfonate-functionalized, siloxane-anchored, self-assembled monolayers,” Langmuir11(6), 2322–2324 (1995). [CrossRef]
  30. I. Aped, Y. Mazuz, and C. N. Sukenik, “Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification,” Beilstein J. Nanotechnol.3, 213–220 (2012). [CrossRef] [PubMed]
  31. V. Artel, I. Aped, R. Cohen, and C. N. Sukenik, “Controlled formation of thiol and disulfide interfaces” (submitted for publication).
  32. Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995). [CrossRef]
  33. H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004). [CrossRef] [PubMed]
  34. H. F. Gilbert, “Thiol/disulfide exchange equilibria and disulfide bond stability,” Methods Enzymol.251, 8–28 (1995). [CrossRef] [PubMed]
  35. U. Gösele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci.28(1), 215–241 (1998). [CrossRef]
  36. M. M. R. Howlader, T. Watanabe, and T. Suga, “Characterization of the bonding strength and interface current of p-Si/n-InP wafers bonded by surface activated bonding method at room temperature,” J. Appl. Phys.91(5), 3062–3066 (2002). [CrossRef]
  37. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron.8(1), 118–131 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited