OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 987–995

Effect of mega-hertz repetition rate on the agglomerated particle size of femtosecond synthesized nanostructures

Mugunthan Sivayoganathan, Bo Tan, and Krishnan Venkatakrishnan  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 8, pp. 987-995 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a unique study performed on the modal transition laser fluence of agglomerated nanoparticle size distributions and their averages in three-dimensional nanostructures that were formed on aluminosilicate ceramic using a megahertz femtosecond laser. At low repetition rates, bimodal particle distributions were obtained and changed to unimodal distributions with the increase in repetition rate. The distribution modals obtained depend only on the laser fluence and the presence of photoionized species were the possible reason for the formation of bimodal distributions. Laser fluence and heat accumulation could have played key roles in determining the average particle sizes. Our study would help to enhance the properties of 3-D agglomerated nanostructures.

© 2012 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(320.7090) Ultrafast optics : Ultrafast lasers
(350.4990) Other areas of optics : Particles
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:

Original Manuscript: February 24, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 29, 2012
Published: June 29, 2012

Mugunthan Sivayoganathan, Bo Tan, and Krishnan Venkatakrishnan, "Effect of mega-hertz repetition rate on the agglomerated particle size of femtosecond synthesized nanostructures," Opt. Mater. Express 2, 987-995 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005). [CrossRef] [PubMed]
  2. S. Kan, T. Mokari, E. Rothenberg, and U. Banin, “Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods,” Nat. Mater.2(3), 155–158 (2003). [CrossRef] [PubMed]
  3. L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000). [CrossRef]
  4. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: properties of nanocrystals,” Chemistry8(1), 28–35 (2002). [CrossRef] [PubMed]
  5. S. R. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” J. Am. Chem. Soc.120(31), 8009–8010 (1998). [CrossRef]
  6. W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol.3(3), 145–150 (2008). [CrossRef] [PubMed]
  7. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001). [CrossRef]
  8. Y. Mao and S. S. Wong, “Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures,” J. Am. Chem. Soc.128(25), 8217–8226 (2006). [CrossRef] [PubMed]
  9. T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007). [CrossRef] [PubMed]
  10. M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000). [CrossRef]
  11. J. Koch, A. V. Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom.19(2), 267–272 (2004). [CrossRef]
  12. C. H. Hung, M. J. Krasnopoler, and J. L. Katz, “is Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane,” J. Chem. Phys.90(3), 1856–1865 (1989). [CrossRef]
  13. K. Y. Park and H. J. Jeong, “Effect of temperature on particle size for vapor - phase synthesis of Ultrafine Iron particles,” Korean J. Chem. Eng.16(1), 64–68 (1999). [CrossRef]
  14. H. Lihavainen, Y. Viisanen, and M. Kulmala, “Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys.114(22), 10031–10038 (2001). [CrossRef]
  15. M. S. Tillack, D. W. Blair, and S. S. Harilal, “The effect of ionization on cluster formation in laser ablation plumes,” Nanotechnology15(3), 390–403 (2004). [CrossRef]
  16. F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001). [CrossRef]
  17. W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Appl. Surf. Sci.154–155, 345–352 (2000). [CrossRef]
  18. S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Appl. Phys., A Mater. Sci. Process.87(1), 47–55 (2007). [CrossRef]
  19. A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010). [CrossRef]
  20. B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express17(2), 1064–1069 (2009). [CrossRef] [PubMed]
  21. M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Study of metallic fibrous nanoparticle aggregate produced using femtosecond laser radiation under ambient conditions,” Nanotechnology21(22), 225601 (2010). [CrossRef] [PubMed]
  22. T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.59, 445–448 (2007). [CrossRef]
  23. F. Yu and R. P. Turco, “Ultrafine aerosol formation via ion-mediated nucleation,” Geophys. Res. Lett.27(6), 883–886 (2000). [CrossRef]
  24. N. A. Fuchs and A. G. Sutugin, Highly Dispersed Aerosols (Ann Arbor, 1970), Chap. 1.
  25. A. C. Zettlemoyer, Nucleation, R. Andres, ed. (Marcel Dekker Inc., 1969), Chap. 2.
  26. V. Piñon and D. Anglos, “Optical emission studies of plasma induced by single and double femtosecond laser pulses,” Spectrochim. Acta, B At. Spectrosc.64(10), 950–960 (2009). [CrossRef]
  27. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  28. F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006). [CrossRef]
  29. B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process.95(2), 537–545 (2009). [CrossRef]
  30. M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited