OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 996–1002

Broadband optical absorptions in inversed woodpile metallic photonic crystals

Md M. Hossain and Min Gu  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 8, pp. 996-1002 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1448 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we demonstrate enhanced optical absorptions within three-dimensional inversed woodpile metallic photonic crystals fabricated via the combination of the direct laser writing method and the electrodeposition method. These metallic microstructures operating in the optical wavelengths are found to possess multiple enhanced absorption peaks over a broad spectral range. We characterize the optical properties with detailed numerical simulations and show that the broadband enhanced absorptions originate from the excitation of robust localized plasmon resonances and enhanced interactions at the photonic band edge within the metallic photonic crystals.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(230.5298) Optical devices : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: May 24, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: June 28, 2012
Published: July 2, 2012

Md M. Hossain and Min Gu, "Broadband optical absorptions in inversed woodpile metallic photonic crystals," Opt. Mater. Express 2, 996-1002 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. V. Teperik, V. V. Popov, and F. J. Garcia De Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005). [CrossRef]
  2. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]
  3. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004). [CrossRef]
  4. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express16(9), 6146–6155 (2008). [CrossRef] [PubMed]
  5. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express16(20), 15431–15438 (2008). [CrossRef] [PubMed]
  6. T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  7. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002). [CrossRef] [PubMed]
  8. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett.28(20), 1909–1911 (2003). [CrossRef] [PubMed]
  9. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003). [CrossRef]
  10. M. M. Hossain, G. Chen, B. Jia, X. H. Wang, and M. Gu, “Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals,” Opt. Express18(9), 9048–9054 (2010). [CrossRef] [PubMed]
  11. J. Li, M. M. Hossain, B. Jia, D. Buso, and M. Gu, “Three-dimensional hybrid photonic crystals merged with localized plasmon resonances,” Opt. Express18(5), 4491–4498 (2010). [CrossRef] [PubMed]
  12. H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066611 (2004). [CrossRef] [PubMed]
  13. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83(2), 380–382 (2003). [CrossRef]
  14. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007). [CrossRef] [PubMed]
  15. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008). [CrossRef] [PubMed]
  16. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  17. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008). [CrossRef]
  18. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  19. J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. (Deerfield Beach Fla.)19(6), 791–794 (2007). [CrossRef]
  20. E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Planar defects in three-dimensional chalcogenide glass photonic crystals,” Opt. Lett.36(12), 2248–2250 (2011). [CrossRef] [PubMed]
  21. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35(7), 1094–1096 (2010). [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited