OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 9 — Sep. 1, 2012
  • pp: 1186–1202

Analysis of the spectra of trivalent erbium in multiple sites of hexagonal aluminum nitride

John B. Gruber, Ulrich Vetter, Gary W. Burdick, Zackery D. Fleischman, Larry D. Merkle, Takashi Taniguchi, Yuan Xiaoli, Takashi Sekiguchi, Daniel Jürgens, and Hans Hofsäss  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 9, pp. 1186-1202 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The 12 K cathodoluminescence spectra of Er3+ doped into single crystals of aluminum nitride (2H-AlN) in the hexagonal phase are reported between 320 nm and 775 nm. The emission spectra represent transitions from the lower Stark level of 2P3/2 to the Stark levels of the 4I15/2, 4I13/2, 4I11/2, 4I9/2, 4F9/2, and 4S3/2 multiplet manifolds of Er3+(4f11). Emission spectra from 4S3/2 to 4I15/2 are also reported. All observed strong line emission are accounted for in terms of two principle sites, denoted site “a” and site “b”, with a few line spectra attributed to additional sites. A parameterized Hamiltonian that includes the atomic and crystal-field terms for Er3+(4f11)2S+1LJ was used to determine the symmetry and the crystal field splitting of the “a” and “b” sites. A descent in symmetry calculation was carried out to determine if distortion due to the size difference between Er, Al and the vacancies can be discerned. Modeling results assuming C3v and C1h are discussed. It appears that the sensitivity to a C1h model is not sufficient to invalidate the choice of C3v as an approximate symmetry for both sites. The g-factors reported from an EPR study of Er3+ in single-crystal AlN are in reasonable agreement with calculated g-factors for Er3+ in the “a” site assuming C3v symmetry.

© 2012 OSA

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(160.2540) Materials : Fluorescent and luminescent materials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: June 26, 2012
Revised Manuscript: July 25, 2012
Manuscript Accepted: July 27, 2012
Published: August 1, 2012

John B. Gruber, Ulrich Vetter, Gary W. Burdick, Zackery D. Fleischman, Larry D. Merkle, Takashi Taniguchi, Yuan Xiaoli, Takashi Sekiguchi, Daniel Jürgens, and Hans Hofsäss, "Analysis of the spectra of trivalent erbium in multiple sites of hexagonal aluminum nitride," Opt. Mater. Express 2, 1186-1202 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983). [CrossRef]
  2. S. M. Sze, Semiconducting Devices, Physics and Technology (Wiley, 1985).
  3. W. Koechner, Solid State Laser Engineering, 5th ed. (Springer, 1999).
  4. A. J. Steckl and J. M. Zavada, “Optoelectronic Properties and Applications of Rare-Earth-Doped GaN,” MRS Bull.24, 33–38 (1999).
  5. B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, 1963).
  6. B. G. Wybourne, Spectroscopic Properties of Rare-Earths (Wiley, 1965).
  7. G. Blasse and B. Granmaier, Luminescent Materials (Springer, 1994).
  8. W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics (McGraw-Hill, 1995), Vol. 2.
  9. R. Terao, J. Tatami, T. Meguro, and K. Komeya, “Fracture Behavior of AlN Ceramics with Rare Earth Oxides,” J. Eur. Ceram. Soc.22(7), 1051–1059 (2002). [CrossRef]
  10. E. D. Readinger, G. D. Metcalfe, H. Shen, and M. Wraback, “GaN doped with neodymium by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.92(6), 061108 (2008). [CrossRef]
  11. N. Kuramoto and H. Taniguchi, “Transparent AlN ceramics,” J. Mater. Sci. Lett.3(6), 471–474 (1984). [CrossRef]
  12. K. Lorenz, E. Alves, T. Monteiro, M. J. Soares, M. Peres, and P. J. M. Smulders, “Optical doping of AlN by rare earth implantation,” Nucl. Instrum. Methods Phys. Res. B242(1–2), 307–310 (2006). [CrossRef]
  13. R. Maâlej, S. Kammoun, M. Dammak, and M. Kammoun, “Theoretical investigations of EPR parameters and local structure of single erbium center in hexagonal GaN layers,” Mater. Sci. Eng. B146(1-3), 183–185 (2008). [CrossRef]
  14. S. Yang, S. M. Evans, L. E. Halliburton, G. A. Slack, S. B. Schujman, K. E. Morgan, R. T. Bondokov, and S. G. Mueller, “Electron paramagnetic resonance of Er3+ ions in aluminum nitride,” J. Appl. Phys.105(2), 023714 (2009). [CrossRef]
  15. J. B. Gruber, G. W. Burdick, N. T. Woodward, V. Dierolf, S. Chandra, and D. K. Sardar, “Crystal-field analysis and Zeeman splittings of energy levels of Nd3+ (4f3) in GaN,” J. Appl. Phys.110(4), 043109 (2011). [CrossRef]
  16. L. D. Merkle, A. C. Sutorik, T. Sanamyan, L. K. Hussey, G. Gilde, C. Cooper, and M. Dubinskii, “Fluorescence of Er3+:AlN polycrystalline ceramic,” Opt. Mater. Express2(1), 78–91 (2012). [CrossRef]
  17. U. Vetter, J. Gruber, A. Nijjar, B. Zandi, G. Öhl, U. Wahl, B. De Vries, H. Hofsäss, M. Dietrich, and the ISOLDE Collaboration, “Crystal field analysis of Pm3+ (4f4) and Sm3+ (4f5) and lattice location studies of 147Nd and 147Pm in w-AlN,” Phys. Rev. B74(20), 205201 (2006). [CrossRef]
  18. S. Petit, R. Jones, M. J. Shaw, P. R. Briddon, B. Hourahine, and T. Frauenheim, “Electronic behavior of rare-earth dopants in AlN: A density-functional study,” Phys. Rev. B72(7), 073205 (2005). [CrossRef]
  19. T. Taniguchi, K. Watanabe, and A. Nakayama, “Synthesis of Eu-doped AlN crystals using Li-based Solvent Under High Pressure” (unpublished).
  20. T. Taniguchi and K. Watanabe, “Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent,” J. Cryst. Growth303(2), 525–529 (2007). [CrossRef]
  21. U. Vetter, H. Hofsäss, and T. Taniguchi, “Visible cathodoluminescence from Eu-implanted single- and polycrystal c-BN annealed under high-temperature, high-pressure conditions,” Appl. Phys. Lett.84(21), 4286–4288 (2004). [CrossRef]
  22. R. Wyckhoff, Crystal Structures, 2nd ed. (Interscience, New York, 1965), Vol. 3.
  23. N. Henry and K. Lonsdale, International Tables for X-ray Crystallography (Kynoch, 1952), Vol. 1.
  24. J. B. Gruber, B. Zandi, H. J. Lozykowski, W. M. Jadwisienczak, and I. Brown, “Crystal-field splitting of Pr3+ (4f2) energy levels in GaN,” J. Appl. Phys.89(12), 7973–7976 (2001). [CrossRef]
  25. J. B. Gruber, B. Zandi, H. J. Lozykowski, and W. M. Jadwisienczak, “Spectroscopic properties of Sm3+ (4f5) in GaN,” J. Appl. Phys.91(5), 2929–2935 (2002). [CrossRef]
  26. J. B. Gruber, U. Vetter, H. Hofsäss, B. Zandi, and M. F. Reid, “Spectra and energy levels of Gd3+ (4f7) in AlN,” Phys. Rev. B69(19), 195202 (2004). [CrossRef]
  27. J. B. Gruber, U. Vetter, H. Hofsäss, B. Zandi, and M. F. Reid, “Spectra and energy levels of Tm3+ (4f12) in AlN,” Phys. Rev. B70(24), 245108 (2004). [CrossRef]
  28. J. B. Gruber, U. Vetter, T. Taniguchi, G. W. Burdick, H. Hofsäss, S. Chandra, and D. K. Sardar, “Spectroscopic analysis of Eu3+ in single-crystal hexagonal phase AlN,” J. Appl. Phys.110(2), 023104 (2011). [CrossRef]
  29. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968). [CrossRef]
  30. W. T. Carnall, G. L. Goodman, K. L. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys.90(7), 3443–3457 (1989). [CrossRef]
  31. J. B. Gruber, K. L. Nash, R. M. Yow, D. K. Sardar, U. V. Valiev, A. A. Uzokov, and G. W. Burdick, “Spectroscopic and magnetic susceptibility analyses of the 7FJ and 5D4 energy levels of Tb3+ (4f8) in TbAlO3,” J. Lumin.128(8), 1271–1284 (2008). [CrossRef]
  32. J. B. Gruber, S. Chandra, D. K. Sardar, U. V. Valiev, N. I. Juraeva, and G. W. Burdick, “Modeling optical spectra and Van Vleck paramagnetism in Er3+:YAlO3,” J. Appl. Phys.105(2), 023112 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited