OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 9 — Sep. 1, 2012
  • pp: 1236–1241

Holographic fabrication of 3D photonic crystals using silicon based reflective optics element

Jeff Lutkenhaus, Franz Aguirre Farro, David George, Kris Ohlinger, Hualiang Zhang, Zsolt Poole, Kevin P. Chen, and Yuankun Lin  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 9, pp. 1236-1241 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a silicon based single optical element that is able to automatically generate desired laser beam polarizations and intensities for the holographic fabrication of woodpile-type photonic crystal templates. A polydimethylsiloxane (PDMS) mold based reflective optics element is fabricated for the generation of five-beam interferences where four beams are arranged four-fold symmetrically around a central beam. Silicon chips in the inner surfaces of the mold are used to reflect the circularly or elliptically polarized beam into four side beams that are linearly polarized with electric fields normal to the incident plane, and reduce their laser intensities. Photonic crystal templates are holographically fabricated in a photosensitive polymer through this silicon-on-PDMS based single optical element and single beam based configuration.

© 2012 OSA

OCIS Codes
(090.2890) Holography : Holographic optical elements
(220.3740) Optical design and fabrication : Lithography
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: June 7, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: August 4, 2012
Published: August 9, 2012

Jeff Lutkenhaus, Franz Aguirre Farro, David George, Kris Ohlinger, Hualiang Zhang, Zsolt Poole, Kevin P. Chen, and Yuankun Lin, "Holographic fabrication of 3D photonic crystals using silicon based reflective optics element," Opt. Mater. Express 2, 1236-1241 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995).
  2. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science293(5532), 1123–1125 (2001). [CrossRef] [PubMed]
  3. K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86, 143503 (2005).
  4. Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao, and Z.-Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express19(3), 1945–1953 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1945 . [CrossRef] [PubMed]
  5. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011). [CrossRef]
  6. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89(5), 413–416 (1994). [CrossRef]
  7. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, A. Geoffrey, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000). [CrossRef] [PubMed]
  8. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  9. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  10. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater.14(7), 2831–2833 (2002). [CrossRef]
  11. Y. Lin, P. R. Herman, and K. Darmawikarta, “Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals,” Appl. Phys. Lett.86(7), 071117 (2005). [CrossRef]
  12. Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, “Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal,” Opt. Express16(12), 9165–9172 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9165 . [CrossRef] [PubMed]
  13. D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express16(20), 15402–15414 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-20-15402 . [CrossRef] [PubMed]
  14. K. Ohlinger, H. Zhang, Y. Lin, D. Xu, and K. P. Chen, “A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication,” Opt. Mater. Express1(5), 1034–1039 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-1034 . [CrossRef]
  15. Y. K. Pang, J. C. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express14(20), 9113–9119 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9113 . [CrossRef] [PubMed]
  16. D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett.94(23), 231116 (2009). [CrossRef]
  17. S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater.23(24), 2749–2752 (2011). [CrossRef]
  18. T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(4), 046610 (2006). [CrossRef] [PubMed]
  19. O. Toader, T. Y. M. Chan, and S. John, “Diamond photonic band gap synthesis by umbrella holographic lithography,” Appl. Phys. Lett.89(10), 101117 (2006). [CrossRef]
  20. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited