OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 9 — Sep. 1, 2012
  • pp: 1260–1269

Brillouin light scattering by spin waves in magnetic metamaterials based on Co nanorods

Y. Veniaminova, A. A. Stashkevich, Y. Roussigné, S. M. Chérif, T. V. Murzina, A. P. Murphy, R. Atkinson, R. J. Pollard, and A. V. Zayats  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 9, pp. 1260-1269 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the investigations of spin wave modes in arrays of densely packed Co nanorods using Brillouin light scattering. We have observed a significant role of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical–analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in the metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic metamaterials are important class of active metamaterials needed for prospective data storage and signal processing applications.

© 2012 OSA

OCIS Codes
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman
(310.6860) Thin films : Thin films, optical properties
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: June 19, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 8, 2012
Published: August 15, 2012

Y. Veniaminova, A. A. Stashkevich, Y. Roussigné, S. M. Chérif, T. V. Murzina, A. P. Murphy, R. Atkinson, R. J. Pollard, and A. V. Zayats, "Brillouin light scattering by spin waves in magnetic metamaterials based on Co nanorods," Opt. Mater. Express 2, 1260-1269 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fert and L. Piraux, “Magnetic nanowires,” J. Magn. Magn. Mater.200(1-3), 338–358 (1999). [CrossRef]
  2. F. Capolino, ed., Theory and Phenomena in Artificial Materials: Handbook of Artificial Materials (CRC Press, 2009).
  3. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC Press, 1996).
  4. V. Boucher, L.-P. Carignan, T. Kodera, C. Caloz, A. Yelon, and D. Ménard, “Effective permeability tensor and double resonance of interacting bistable ferromagnetic nanowires,” Phys. Rev. B80(22), 224402 (2009). [CrossRef]
  5. B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett.94(20), 202505 (2009). [CrossRef]
  6. A. A. Stashkevich, Y. Roussigné, P. Djemia, S. M. Chérif, P. R. Evans, A. P. Murphy, W. R. Hendren, R. Atkinson, R. J. Pollard, A. V. Zayats, G. Chaboussant, and F. Ott, “Spin-wave modes in Ni nanorod arrays studied by Brillouin light scattering,” Phys. Rev. B80(14), 144406 (2009). [CrossRef]
  7. J.-E. Wegrowe, T. Wade, X. Hoffer, L. Gravier, J.-M. Bonard, and J.-P. Ansermet, “Magnetoresistance of nanocontacts with constrained magnetic domain walls,” Phys. Rev. B67(10), 104418 (2003). [CrossRef]
  8. L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, and A. Fert, “Giant magnetoresistance in magnetic multilayered nanowires,” J. Appl. Phys.65, 2484–2486 (1994).
  9. K. Liu, K. Nagodawithana, P. C. Searson, and C. L. Chien, “Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires,” Phys. Rev. B Condens. Matter51(11), 7381–7384 (1995). [CrossRef] [PubMed]
  10. S. Dubois, C. Marchal, J. M. Beuken, L. Piraux, J. L. Duvail, A. Fert, J. M. George, and J. L. Maurice, “Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires,” Appl. Phys. Lett.70(3), 396–398 (1997). [CrossRef]
  11. T. Blon, M. Mátéfi-Tempfli, S. Mátéfi-Tempfli, L. Piraux, S. Fusil, R. Guillemet, K. Bouzehouane, C. Deranlot, and V. Cros, “Spin momentum transfer effects observed in electrodeposited Co/Cu/Co nanowires,” J. Appl. Phys.102(10), 103906 (2007). [CrossRef]
  12. M. Tsoi, J. Z. Sun, M. J. Rooks, R. H. Koch, and S. S. P. Parkin, “Current-driven excitations in magnetic multilayer nanopillars from 4.2 to 300 K,” Phys. Rev. B69(10), 100406 (2004). [CrossRef]
  13. G. Goglio, S. Pignard, A. Radulescu, L. Piraux, I. Huynen, D. Vanhoenacker, and A. Vander Vorst, “Microwave properties of metallic nanowires,” Appl. Phys. Lett.75(12), 1769–1771 (1999). [CrossRef]
  14. M. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, and U. Ebels, “Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance,” Phys. Rev. B63(10), 104415 (2001). [CrossRef]
  15. U. Ebels, J.-L. Duvail, P. E. Wigen, L. Piraux, L. D. Buda, and K. Ounadjela, “Ferromagnetic resonance studies of Ni nanowire arrays,” Phys. Rev. B64(14), 144421 (2001). [CrossRef]
  16. Z. K. Wang, M. H. Kuok, S. C. Ng, H. J. Fan, D. J. Lockwood, K. Nielsch, and R. B. Wehrspohn, “Magnetic and acoustic excitations in confined nickel nanowires,” Mater. Phys. Mech.4(1), 22–24 (2001).
  17. Z. K. Wang, M. H. Kuok, S. C. Ng, D. J. Lockwood, M. G. Cottam, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Spin-wave quantization in ferromagnetic nickel nanowires,” Phys. Rev. Lett.89(2), 027201 (2002). [CrossRef] [PubMed]
  18. P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology17(23), 5746–5753 (2006). [CrossRef]
  19. E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc. Lond.A240, 599–642 (1948).
  20. The Object Oriented MicroMagnetic Framework (OOMMF) project at ITL/NIST, http://math.nist.gov/oommf/ .
  21. R. D. McMichael and M. D. Stiles, “Magnetic normal modes of nanoelements,” J. Appl. Phys.97(10), 10J901 (2005). [CrossRef]
  22. Y. Roussigné, S. M. Cherif, and P. Moch, “Spin waves calculations in magnetic stripes,” J. Magn. Magn. Mater.263(3), 289–294 (2003). [CrossRef]
  23. P. Grünberg, “Light scattering from spin-waves in thin films and layered magnetic structures,” in Light Scattering in Solids, M. Cardona and G. Güntherrodt, eds. (Springer-Verlag, 1989), Vol. V, pp. 303–335.
  24. K. Yu. Guslienko, S. O. Demokritov, B. Hillebrands, and A. N. Slavin, “Effective dipolar boundary conditions for dynamic magnetization in thin magnetic stripes,” Phys. Rev. B66(13), 132402 (2002). [CrossRef]
  25. T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Gan’shina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009). [CrossRef]
  26. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited