OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 11–20

Structural and optical properties of highly Er-doped Yb-Y disilicate thin films

Paolo Cardile, Maria Miritello, Francesco Ruffino, and Francesco Priolo  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 1, pp. 11-20 (2013)
http://dx.doi.org/10.1364/OME.3.000011


View Full Text Article

Enhanced HTML    Acrobat PDF (1866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Highly Er-doped Yb-Y disilicates thin films grown on c-Si will be presented. The approach has permitted to vary independently the concentrations of both active rare earths, Er and Yb, and to effectively control the Er sensitization from Yb ions. We will demonstrate that these films are stable, having a uniform distribution of the chemical components throughout their thickness and a favored crystallization of the α-phase, which is the most optically efficient. We verified that this crystallization can be ascribed to a densification of the material and to the mobility locally introduced by ion implantation. Finally we will show a strong PL emission at 1.54 μm, associated to the Yb-Er energy transfer mechanism, without any deleterious energy back-transfer. These properties make this new class of thin films a valuable and promising approach for the realization of efficient planar amplifiers.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(260.2160) Physical optics : Energy transfer
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Laser Materials

History
Original Manuscript: August 28, 2012
Revised Manuscript: October 13, 2012
Manuscript Accepted: October 15, 2012
Published: November 29, 2012

Citation
Paolo Cardile, Maria Miritello, Francesco Ruffino, and Francesco Priolo, "Structural and optical properties of highly Er-doped Yb-Y disilicate thin films," Opt. Mater. Express 3, 11-20 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-1-11


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983). [CrossRef]
  2. K. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” J. Prog. Quantum Electron.26(4-5), 225–284 (2002). [CrossRef]
  3. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys.82(1), 1–39 (1997). [CrossRef]
  4. K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994). [CrossRef]
  5. Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997). [CrossRef]
  6. M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006). [CrossRef]
  7. T.-D. Nguyen, C.-T. Dinh, and T.-O. Do, “Shape- and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro- to nanostructures and their upconversion luminescence,” ACS Nano4(4), 2263–2273 (2010). [CrossRef] [PubMed]
  8. M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007). [CrossRef]
  9. H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005). [CrossRef] [PubMed]
  10. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003). [CrossRef]
  11. R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys.106(4), 043512 (2009). [CrossRef]
  12. M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in erbium-ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-20761 . [CrossRef] [PubMed]
  13. M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010). [CrossRef]
  14. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011). [CrossRef]
  15. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).
  16. K. Suh, J.-H. Shin, S.-J. Seo, and B.-S. Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett.92(12), 121910 (2008). [CrossRef]
  17. M. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater.21(4), 705–712 (2003). [CrossRef]
  18. G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.7(1), 21–44 (2001). [CrossRef]
  19. H. S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23265 . [CrossRef] [PubMed]
  20. B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012). [CrossRef]
  21. J. Ito and H. Johnson, “Synthesis and study of yttrialite,” Am. Mineral.53, 1940–1952 (1968).
  22. R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008). [CrossRef]
  23. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006). [CrossRef]
  24. P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002). [CrossRef]
  25. P. Cardile, M. Miritello, and F. Priolo, “Energy transfer mechanisms in Er-Yb-Y disilicate thin films,” Appl. Phys. Lett.100(25), 251913 (2012). [CrossRef]
  26. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+-doped phosphate glasses,” J. Opt. Soc. Am. B17(5), 833–839 (2000). [CrossRef]
  27. L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses,” Opt. Mater.17(3), 371–377 (2001). [CrossRef]
  28. L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited